Advertisement

Agent Based Framework to Support Manufacturing Problem Solving Integrating Product Lifecycle Management and Case-Based Reasoning

  • Alvaro CamarilloEmail author
  • José Ríos
  • Klaus-Dieter Althoff
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 517)

Abstract

During the execution of manufacturing processes, problems arise and they have to be solved systematically to reach and exceed production targets. Normally, a production team analyzes and solves these problems, with the support of different methodologies and working directly on the shop floor. This paper presents an ontology-based approach to easily capture and reuse the knowledge generated in such a process of Manufacturing Problem Solving (MPS). The proposed ontology is used as basis in an ad-hoc MPS software system. The architecture of the MPS system is based on the integration of three technologies: PLM (Product Lifecycle Management), CBR (Case-Based Reasoning) and software agents. The PLM system is used as an automatic source of the problem context information. The CBR system is used as repository of cases and artificial intelligence tool to support the efficient reuse of knowledge during the resolution of new problems. A software agent platform allows developing an integrated prototype of an ad-hoc software system. This paper shows the architecture of the MPS system prototype.

Keywords

Ontology Product Lifecycle Management (PLM) Case-Based Reasoning (CBR) Process Failure Mode and Effect Analysis (PFMEA) Manufacturing Problem Solving (MPS) 

References

  1. 1.
    Bhuiyan, N., Baghel, A.: An overview of continuous improvement: from the past to the present. Manage. Decis. 43(5), 761–771 (2005).  https://doi.org/10.1108/00251740510597761 CrossRefGoogle Scholar
  2. 2.
    VDA: Qualitätsmanagement in der Automobilindustrie – Qualitätsmanagement-Methoden Assessments. Verband der Autoindustrie (VDA) (2015)Google Scholar
  3. 3.
    Liu, D.R., Ke, C.K.: Knowledge support for problem-solving in a production process: a hybrid of knowledge discovery and case-based reasoning. Expert Syst. Appl. 33, 147–161 (2007).  https://doi.org/10.1016/j.eswa.2006.04.026 CrossRefGoogle Scholar
  4. 4.
    Sowa, J.F.: Knowledge Representation - Logical, Philosophical and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove (2000). ISBN 0 534-94965-7Google Scholar
  5. 5.
    Stark, J.: Product Lifecycle Management. Springer International Publishing, Switzerland (2015).  https://doi.org/10.1007/978-3-319-17440-2. ISBN 978-3-319-17440-2CrossRefGoogle Scholar
  6. 6.
    Richter, M.M., Weber, R.: Case-Based Reasoning: A Textbook. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40167-1. ISBN 978-3-642-40167-1CrossRefGoogle Scholar
  7. 7.
    Foguem, B.K., Coudert, T., Béler, C., Geneste, L.: Knowledge formalization in experience feedback processes: an ontology-based approach. Comput. Ind. 59(7), 694–710 (2008).  https://doi.org/10.1016/j.compind.2007.12.014 CrossRefGoogle Scholar
  8. 8.
    Dittmann, L., Rademacher, T., Zelewski, S.: Performing FMEA using ontologies. In: 18th International Workshop on Qualitative Reasoning, Evanston, USA, pp. 209–216 (2004)Google Scholar
  9. 9.
    Ebrahimipour, V., Rezaie, K., Shokravi, S.: An ontology approach to support FMEA studies. Expert Syst. Appl. 37(1), 671–677 (2010).  https://doi.org/10.1109/RAMS.2009.4914711 CrossRefGoogle Scholar
  10. 10.
    Cambria, E., White, B.: Jumping NLP curves: a review of natural language processing research. IEEE Comput. Intell. Magaz. 9(2), 48–57 (2014)CrossRefGoogle Scholar
  11. 11.
    Bertin, A.: Intégration d’un système de Retour d’Expériences à un PLM. Doctoral dissertation - Laboratoire Génie Production (LGP) - Ecole Nationale d’Ingénieurs deTarbes - Université de Toulouse (2012)Google Scholar
  12. 12.
    Bertin, A., Noyes, D., Clermont, P.: Problem solving methods as lessons learned system instrumentation into a PLM tool. In: 14th IFAC Symposium on Information Control Problems in Manufacturing, Bucarest, Roumanie, 23–25 May 2012 (2012). ISBN: hal-01005542Google Scholar
  13. 13.
    Bach, K.: Knowledge acquisition for case-based reasoning systems. Ph.D. thesis, University of Hildesheim (2012)Google Scholar
  14. 14.
    Reuss, P., Althoff, K.D., Hundt, A., Henkel, W., Pfeiffer, M.: Multi-agent case-based diagnosis in the aircraft domain. In: Workshop Proceedings - 23rd International Conference on Case-Based Reasoning (ICCBR 2015), pp. 43–52 (2015)Google Scholar
  15. 15.
    Kepner, C.H., Tregoe, B.B.: The New Rational Manager - An Updated Edition for a New World. Princeton Research Press, Princeton (2008). ISBN 978-0-9715627-1-4Google Scholar
  16. 16.
    Bellifemine, F.L., Caire, G., Greenwood, D.: Developing multi-agent systems with JADE. Wiley Series in Agent Technology. Wiley, England (2007)CrossRefGoogle Scholar
  17. 17.
    Cearley, D.W., Walker, M.J., Burke, B.: Top 10 Strategic Technology Trends for 2016: At a Glance. Gartner (2015)Google Scholar
  18. 18.
    Scippacercola, F., Pietrantuono, R., Russo, S., Silva, N.P.: SysML-based and prolog-supported FMEA. In: 2015 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 174–181. IEEE (2015)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Alvaro Camarillo
    • 1
    • 2
    Email author
  • José Ríos
    • 2
  • Klaus-Dieter Althoff
    • 3
    • 4
  1. 1.Exide Technologies GmbHBad LauterbergGermany
  2. 2.Mechanical Engineering DepartmentUniversidad Politécnica de MadridMadridSpain
  3. 3.German Research Center for Artificial Intelligence (DFKI)KaiserslauternGermany
  4. 4.University of HildesheimHildesheimGermany

Personalised recommendations