Skip to main content

Conclusions and Future Work

  • Chapter
  • First Online:
  • 475 Accesses

Abstract

The control theory of fractional diffusion systems constitutes one of the next big challenges of the engineering community. They will require cooperation of multidisciplines, such as mathematical modeling, engineering applications, and information sciences in order to be successful. Among those challenges, the notation of regional anaysis when the system under consideration is only studied on a subset of the whole space has to be one of the most significance to be explored, simply because that focusing on the regional anaysis would allow for a reduction in the number of physical actuators , offer the potential to reduce computational requirements in some cases, and also possible to discuss those systems which are not controllable on the whole domain, etc. So in this book, instead of analyzing a system by purely theoretical viewpoint, we study the time fractional diffusion system by using the notions of sensors and actuators , which allow us to understand the system better and consequently enable us to steer the real-world system in a better way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ashyralyev A (2009) A note on fractional derivatives and fractional powers of operators. J Math Anal Appl 357(1):232–236

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrios B, Colorado E, De Pablo A, Sánchez U (2012) On some critical problems for the fractional Laplacian operator. J Differ Equ 252(11):6133–6162

    Article  MathSciNet  MATH  Google Scholar 

  3. Brun R, Reichert P, Künsch HR (2001) Practical identifiability analysis of large environmental simulation models. Water Resour Res 37(4):1015–1030

    Article  Google Scholar 

  4. Cao J, Chen Y, Li C (2015) Multi-UAV-based optimal crop-dusting of anomalously diffusing infestation of crops. In: 2015 American control conference Palmer House Hilton 1-3 July 2015, Chicago, IL, USA. See also: arXiv:1411.2880

  5. Caputo M. Elasticità e dissipazione[M]. Zanichelli, 1969

    Google Scholar 

  6. del Castillo-Negrete D, Carreras B, Lynch V (2004) Fractional diffusion in plasma turbulence. Phys Plasmas 11(8):3854–3864

    Article  Google Scholar 

  7. del Castillo-Negrete D, Carreras B, Lynch V (2005) Nondiffusive transport in plasma turbulence: a fractional diffusion approach. Phys Rev E 94(6):065003

    Google Scholar 

  8. Chen W, Zhang J, Zhang J (2013) A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures. Fract Calc Appl Anal 16(1):76–92

    MathSciNet  MATH  Google Scholar 

  9. Choi W, Kim S, Lee KA (2014) Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional laplacian. J Funct Anal 266(11):6531–6598

    Article  MathSciNet  MATH  Google Scholar 

  10. Curtain RF, Pritchard AJ (1978) Infinite dimensional linear systems theory, vol 8. Springer, Berlin

    MATH  Google Scholar 

  11. Das S, Gupta PK (2011) A mathematical model on fractional Lotka-Volterra equations. J Theor Biol 277(1):1–6

    Article  MathSciNet  Google Scholar 

  12. Di Nezza E, Palatucci G, Valdinoci E (2012) Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math 136(5):521–573

    Article  MathSciNet  MATH  Google Scholar 

  13. Du Q, Gunzburger M, Lehoucq RB, Zhou K (2012) Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev 54(4):667–696

    Article  MathSciNet  MATH  Google Scholar 

  14. Du Q, Gunzburger M, Lehoucq R, Zhou K (2013) A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math Models Methods Appl Sci 23(03):493–540

    Article  MathSciNet  MATH  Google Scholar 

  15. El Jai A, Pritchard AJ (1988) Sensors and controls in the analysis of distributed systems. Halsted Press, New York

    Google Scholar 

  16. Faris WG (2015) Methods of applied mathematics second semester lecture notes, 2 January 2009. http://math.arizona.edu/~faris/methbweb/methlecb.pdf

  17. Fattorini HO, Russell DL (1971) Exact controllability theorems for linear parabolic equations in one space dimension. Arch Ration Mech Anal 43(4):272–292

    Article  MathSciNet  MATH  Google Scholar 

  18. Ge F, Chen Y, Kou C (2017) Actuator characterisations to achieve approximate controllability for a class of fractional sub-diffusion equations. Intern J Control 90(6):1212–1220

    Google Scholar 

  19. Gorenflo R, Mainardi F (1998) Random walk models for space-fractional diffusion processes. Fract Calc Appl Anal 1(2):167–191

    MathSciNet  MATH  Google Scholar 

  20. Hahn M, Umarov S (2011) Fractional Fokker-Planck-Kolmogorov type equations and their associated stochastic differential equations. Fract Calc Appl Anal 14(1):56–79

    Article  MathSciNet  MATH  Google Scholar 

  21. Hahn M, Kobayashi K, Umarov S (2012) SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations. J Theor Probab 25(1):262–279

    Article  MATH  Google Scholar 

  22. Jiang H, Liu F, Turner I, Burrage K (2012) Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J Math Anal Appl 389(2):1117–1127

    Article  MathSciNet  MATH  Google Scholar 

  23. Jiao Z, Chen Y, Podlubny I (2012) Distributed-order dynamic systems: stability, simulation, applications and perspectives. Springerbriefs in electrical and computer engineering/Springerbriefs in control, automation and robotics. Springer New York

    Google Scholar 

  24. Komatsu H (1966) Fractional powers of operators. Pacific J Math 19(2):285–346

    Article  MathSciNet  MATH  Google Scholar 

  25. Kwaśnicki M (2012) Eigenvalues of the fractional Laplace operator in the interval. J Funct Anal 262(5):2379–2402

    Article  MathSciNet  MATH  Google Scholar 

  26. Landkof NS (1972) Foundations of modern potential theory. Die Grundlehren der mathematischen Wissenschaften, Band 180. Translated from the Russian by A. P. Doohovskoy. Springer, New York

    Google Scholar 

  27. Liu F, Anh V, Turner I (2004a) Numerical solution of the space fractional fokker-planck equation. J Comput Appl Math 166(1):209–219

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu F, Anh V, Turner I (2004b) Numerical solution of the space fractional Fokker-Planck equation. J Comput Appl Math 166(1):209–219

    Article  MathSciNet  MATH  Google Scholar 

  29. Lorenzo CF, Hartley TT (2002) Variable order and distributed order fractional operators. Nonlinear Dyn 29(1–4):57–98

    Article  MathSciNet  MATH  Google Scholar 

  30. Luchko Y, Gorenflo R (1999) An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math Vietnam 24(2):207–233

    MathSciNet  MATH  Google Scholar 

  31. Lv G, Duan J (2014) Martingale and weak solutions for a stochastic nonlocal Burgers equation on bounded intervals. arXiv preprint arXiv:14107691

  32. Mainardi F (1993) Fractional diffusive waves in viscoelastic solids in iutam symposium-nonlinear waves in solids, Wegner JL, Norwood FR (eds) (asme/amr, fairfield nj). Abstract Appl Mech Rev 46(549):93–97

    Google Scholar 

  33. Mainardi F (1996) The fundamental solutions for the fractional diffusion-wave equation. Appl Math Lett 9(6):23–28

    Article  MathSciNet  MATH  Google Scholar 

  34. Mainardi F, Luchko Y, Pagnini G (2001) The fundamental solution of the space-time fractional diffusion equation. Fract Calc Appl Anal 4(2):153–192

    MathSciNet  MATH  Google Scholar 

  35. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    Article  MathSciNet  MATH  Google Scholar 

  36. Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A 37:161–208

    Article  MathSciNet  MATH  Google Scholar 

  37. Metzler R, Nonnenmacher TF (2002) Space-and time-fractional diffusion and wave equations, fractional fokker-planck equations, and physical motivation. Chem Phys 284(1):67–90

    Article  Google Scholar 

  38. Micu S, Zuazua E (2006) On the controllability of a fractional order parabolic equation. SIAM J Control Optim 44(6):1950–1972

    Article  MathSciNet  MATH  Google Scholar 

  39. Momani S, Odibat Z (2006) Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. Appl Math Comput 177(2):488–494

    MathSciNet  MATH  Google Scholar 

  40. Najafi HS, Sheikhani AR, Ansari A (2011) Stability analysis of distributed order fractional differential equations. Abstract Appl Anal. Hindawi Publishing Corporation

    Google Scholar 

  41. Odibat ZM, Momani S (2006) Approximate solutions for boundary value problems of time-fractional wave equation. Appl Math Comput 181(1):767–774

    MathSciNet  MATH  Google Scholar 

  42. Ros-Oton X, Serra J (2014) The dirichlet problem for the fractional Laplacian: regularity up to the boundary. J Math Pures Appl 101(3):275–302

    Article  MathSciNet  MATH  Google Scholar 

  43. Saadatmandi A, Dehghan M (2011) A tau approach for solution of the space fractional diffusion equation. Comput Math Appl 62(3):1135–1142

    Article  MathSciNet  MATH  Google Scholar 

  44. Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives. In: Theory and Applications. Gordon and Breach, Yverdon

    Google Scholar 

  45. Schneider W, Wyss W (1989) Fractional diffusion and wave equations. J Math Phys 30(1):134–144

    Article  MathSciNet  MATH  Google Scholar 

  46. Spears WM, Spears DF (2012) Physicomimetics: physics-based swarm intelligence. Springer Science & Business Media, Berlin

    Google Scholar 

  47. Sun H, Chen W, Chen Y (2009) Variable-order fractional differential operators in anomalous diffusion modeling. Physics A 388(21):4586–4592

    Article  Google Scholar 

  48. Tricaud C, Chen Y (2011) Optimal mobile sensing and actuation policies in cyber-physical systems. Springer Science & Business Media, Berlin

    Google Scholar 

  49. Uchaikin V, Sibatov R (2012) Fractional kinetics in solids: anomalous charge transport in semiconductors. In: Dielectrics and nanosystems. World Science, Singapore, 2013

    Google Scholar 

  50. Umarov S (1991) Algebra of pseudo-differential operators with variable analytic symbols and propriety of the corresponding equations. Differ Equ 27(6):753–759

    MATH  Google Scholar 

  51. Umarov S (2015) Introduction to fractional and pseudo-differential equations with singular symbols, vol 41. Springer, Berlin

    Google Scholar 

  52. Valério D, Sá da Costa J (2013) Variable order fractional controllers. Asian J Control 15(3):648–657

    Article  MathSciNet  MATH  Google Scholar 

  53. Wharmby AW, Bagley RL (2015) Necessary conditions to solve fractional order wave equations using traditional laplace transforms. Fract Calc Appl Anal 18(6):1350–1357

    Article  MathSciNet  MATH  Google Scholar 

  54. Yang Q, Liu F, Turner I (2010) Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl Math Model 34(1):200–218

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YangQuan Chen .

Appendix A: Three Different Types of Operators

Appendix A: Three Different Types of Operators

(1) Fractional Laplacian operator and fractional power of operator

Let us denote \((-\triangle )^{\alpha /2}\) the nonlocal operator (also called the fractional Laplacian operator) defined pointwise by the following Cauchy principal value integral

$$\begin{aligned} (-\triangle )^{\alpha /2} f(x)=C_{\alpha } P.V. \int _{\mathbf {R}}{\frac{f(x)-f(y)}{|x-y|^{1+\alpha }}}dy,~~0<\alpha <2, \end{aligned}$$
(8.2.10)

where \(C_{\alpha }=\frac{2^\alpha \varGamma (1/2+\alpha /2)}{\sqrt{\pi } \left| \varGamma \left( -\alpha /2\right) \right| }\) is a constant dependent on the order \(\alpha .\) Obviously, the fractional Laplacian \(\left( -\triangle \right) ^{\alpha /2}\) is a nonlocal operator which depends on the parameter \(\alpha \) and recovers the usual Laplacian as \(\alpha \rightarrow 2\). For more information about the fractional Laplacian operator, see [2, 9, 13, 17, 38] and the references cited therein.

Theorem 8.2.1

([25]) Suppose that \((-\triangle )^{\alpha /2}\) is defined in \(L^2(0, l)\) for \(\alpha \in (0, 2)\). Then, the eigenvalues of the following spectral problem

$$\begin{aligned} (-\triangle )^{\alpha /2} \xi (x)=\lambda \xi (x),~~x\in (0,l), \end{aligned}$$
(8.2.11)

where \(\xi \in L^2(0, l)\) is extended to all \(\mathbf {R}\) by 0 is

$$\begin{aligned} \lambda _n=\left( \frac{n\pi }{l}-\frac{(2-\alpha )\pi }{4l}\right) ^\alpha +O\left( \frac{1}{n}\right) \end{aligned}$$
(8.2.12)

satisfying

$$\begin{aligned} 0<\lambda _1<\lambda _2\le \cdots \le \lambda _i\le \cdots . \end{aligned}$$

Moreover, the corresponding eigenfunctions \(\xi _n\) of \(\lambda _n,\) after normalization, form a complete orthonormal basis in \(L^2(0,l).\)

Note that the constant in the error term \(O\left( \frac{1}{n}\right) \) tends to zero when \(\alpha \) approaches 2 and in the particular case, when \(\alpha =2\), we see that \(\lambda _n=\left( n\pi /l\right) ^2\) without the error term.

However, for a positive operator A on bounded domain [0, l]. Suppose \(0<\lambda _1\le \lambda _2\le \cdots \le \lambda _n\le \cdots \) are the eigenvalues of A, \(\{\xi _1, \xi _2,\ldots ,\xi _n, \ldots \}\) are the corresponding eigenfunctions and \(\xi _n~(i=1,2,\ldots )\) form an orthonormal basis of \(L^2(0,l)\). Let \((\cdot ,\cdot )\) be the inner product of \(L^2(0,l).\) We define the fractional power of operator A as follows:

$$\begin{aligned} A^\beta f(x)=\sum \limits _{n=1}^\infty {\lambda _n^\beta (\xi _n,f)\xi _n(x)},~~f\in L^2(0,l), \end{aligned}$$
(8.2.13)

then \(\lambda _n^\beta ~(i=1,2,\ldots )\) are the eigenvalues of \(A^\beta \). This implies that the two operators are different.

Note that the work spaces of the two operators (fractional Laplacian operator and fractional power of operator A) are different. Before stating our main results, we first introduce two Banach spaces, which are specified in [12,13,14, 31].

For \(\varOmega \subseteq \mathbf {R}^n\) is a bounded domain, \(s\in (0,1)\) and \(p\in [1,\infty )\), we define the classical Sobolev space \(W^{s,p}(\varOmega )\) as follows [12]:

$$\begin{aligned} W^{s,p}(\varOmega ):=\left\{ f\in L^p(\varOmega ): \frac{f(x)-f(y)}{|x-y|^{\frac{n}{p}+s}}\in L^p(\varOmega \times \varOmega )\right\} \end{aligned}$$
(8.2.14)

endowed with the natural norm

$$\begin{aligned}&~&\Vert f\Vert _{W^{s,p}(\varOmega )}:=\left( \int _\varOmega {|f(x)|^p}dx+\int _\varOmega \int _\varOmega {\frac{|f(x)-f(y)|^p}{|x-y|^{n+sp}}}dxdy\right) ^{1/p} \end{aligned}$$

is an intermediary Banach space between \(L^p(\varOmega )\) and \(W^{1,p}(\varOmega )\). When a noninteger \(s>1\), let \(s=m+\sigma \) with \(m\in \mathbf {N}\) and \(\sigma \in (0,1)\). In this case, let \(D^\beta f\) with \(|\beta |=m\) be the distributed derivative of f, then the classical Sobolev space \(W^{s,p}(\varOmega )\) defined by

(8.2.15)

with respect to the norm

$$\begin{aligned} \Vert f\Vert _{W^{s,p}(\varOmega )}:=\left( \Vert f\Vert ^p_{W^{m,p}(\varOmega )}+\Vert D^\beta f\Vert ^p_{W^{\sigma ,p}(\varOmega )}\right) ^{1/p} \end{aligned}$$
(8.2.16)

is a Banach space. Clearly, if \(s = m\) is an integer, the space \(W^{s,p}(\varOmega )\) coincides with the Sobolev space \(W^{m,p}(\varOmega )\).

Besides, let \(\rho (x)\sim \frac{1}{\delta ^\alpha (x)}\) with \(\delta (x)=\text{ dist }(x,\varOmega ^c)\). Define another space as follows:

$$\begin{aligned} W^{s,p}_\rho (\varOmega ):=\left\{ f\in W^{s,p}(\varOmega ) : \rho (x)f(x)\in L^p(\varOmega )\right\} \end{aligned}$$
(8.2.17)

with the norm

$$\begin{aligned} \begin{array}{l} \Vert f\Vert _{W^{s,p}_\rho (\varOmega )}:=\left( \int _\varOmega {|\rho (x)f(x)|^p}dx+\int _\varOmega \int _\varOmega {\frac{|f(x)-f(y)|^p}{|x-y|^{n+sp}}}dxdy\right) ^{1/p}.\qquad \qquad \end{array}\end{aligned}$$
(8.2.18)

Actually, \(W^{s,p}_\rho (\varOmega )\) is called nonlocal Sobolev space and we have \(W^{s,p}_\rho (\varOmega ) \subseteq W^{s,p}(\varOmega )\) [13, 14].

By the Remark 2.1 in [31], for the fractional power of operator, we take the classical fractional Sobolev space as its work space. But for fractional Laplacian operator, we must take the nonlocal Sobolev space as its work space, which can be regarded as the weighted fractional Sobolev space. More precisely, for any element \(f\in W^{s,p}(\varOmega )\), since \(-\triangle \) is a local operator and we do not know how f(x) approaches 0 when \(x \rightarrow \partial \varOmega \). Even if considering the space \(W_0^{s,p}(\varOmega );=\{f\in W^{s,p}(\varOmega ): f|_{\partial \varOmega }=0\}\), we only know that the function \(f= 0\) on the boundary and we do not know how f approaches 0. However, for the fractional Laplacian operator, it is a nonlocal operator and it is defined in the whole space. So, it provides information about how f approaches 0 as \(x \rightarrow \partial \varOmega \). In fact, from the definition of nonlocal Sobolev space, we know that \(\frac{f(x)}{\delta ^\alpha (x)}\rightarrow 0\) as \(x \rightarrow \partial \varOmega \), which dictates how f approaches 0 near the boundary. It coincides with the result of the Theorem 1.2 in [42]. Thus, this is a significant difference between the fractional power of operator \(A=-\triangle \) and the fractional Laplacian operator.

Besides, it is well known that

$$\begin{aligned} \Vert \triangle f\Vert _{W^{s,p}(\varOmega )}=\Vert f\Vert _{W^{s+2,p}(\varOmega )}.\end{aligned}$$
(8.2.19)

However, for the fractional Laplacian operator \((-\triangle )^\alpha \),

$$\begin{aligned} \Vert (-\triangle )^\alpha f\Vert _{W^{s,p}(\varOmega )}=\Vert f\Vert _{W^{s+2\alpha ,p}(\varOmega )}\end{aligned}$$
(8.2.20)

will not hold. By using Fourier transform, we have

$$\begin{aligned} \Vert (-\triangle )^\alpha f\Vert _{W_\rho ^{s,p}(\varOmega )}=\Vert f\Vert _{W_\rho ^{s+2\alpha ,p}(\varOmega )}.\end{aligned}$$
(8.2.21)

This also indicates that the fractional power of operator \(-\triangle \) and the fractional Laplacian operator are different.

(2) Fractional Laplacian operator and fractional derivative

According to [44], the fractional Laplacian is the operator with symbol \(|x|^\alpha .\) In other words, the following formula holds:

$$\begin{aligned} (-\triangle )^{\alpha /2}f(x)= \mathscr {F}^{-1}|x|^\alpha \mathscr {F} f(x), \end{aligned}$$
(8.2.22)

where \(\mathscr {F}\) and \(\mathscr {F}^{-1}\) denote the Fourier transform and inverse Fourier transform of f(x), respectively. We refer the readers to [26] for a detailed proof of the equivalence between the two definitions (8.2.10) and (8.2.22) of fractional Laplacian operator.

The Riesz fractional operator is defined as follows:

Definition 8.2.1

([19]) The Riesz fractional operator for \(n-1<\alpha \le n\) on a finite interval \(0\le x\le l\) is defined as

$$\begin{aligned} \frac{\partial ^\alpha }{\partial |x|^\alpha }f(x) =\frac{-1}{2\cos (\frac{\alpha \pi }{2})}\left[ {}_0D_x^\alpha +{}_xD_l^\alpha \right] f(x), \end{aligned}$$
(8.2.23)

where \(_0D_x^\alpha \) and \(_xD_l^\alpha \) are the left-sided and right-sided Riemann–Liouville fractional derivative, respectively.

By using Luchko’s theorem in [30], we obtain the following result on the equivalent relationship between the Riesz fractional derivative \(\frac{\partial ^\alpha }{\partial |x|^\alpha }\) and the fractional Laplacian operator \(-(-\triangle )^{\alpha /2}\):

Lemma 8.2.1

([22]) For a function f(x) defined on the finite domain [0, l], \(f(0)=f(l)=0\) and \(\alpha \in (1,2)\), the following equality holds:

$$\begin{aligned} -\left( -\triangle \right) ^{\alpha /2} f(x)=\frac{-1}{2\cos (\frac{\alpha \pi }{2})} \left[ {}_0D_x^\alpha f(x)+{}_xD_l^\alpha f(x)\right] =\frac{\partial ^\alpha }{\partial |x|^\alpha }f(x).\qquad \qquad \end{aligned}$$
(8.2.24)

For more information on the analytical solution of the generalized multi-term time and space fractional partial differential equations with Dirichlet nonhomogeneous boundary conditions, we refer the readers to [22]. For more information on the numerical solution of the fractional partial differential equation with Riesz space fractional derivatives on a finite domain, consult [28, 54].

(3) Fractional derivative and fractional power of operator

In this part, we first show the following definition of the positive operator.

Definition 8.2.2

([1]) The operator A is said to be positive if its spectrum \(\sigma (A)\) lies in the interior of the sector of angle \(\varphi \in (0,\pi )\), symmetric with respect to the real axis, and if on the edges of this sector, \(S_1=\{\rho e^{i\varphi }: 0\le \rho <\infty \}\) and \(S_2=\{\rho e^{-i\varphi }: 0\le \rho <\infty \}\), and outside it the resolvent \((\lambda I-A)^{-1}\) is subject to the bound

$$\begin{aligned} \left\| (\lambda I-A)^{-1}\right\| \le \frac{M(\varphi )}{1+|\lambda |}. \end{aligned}$$
(8.2.25)

For a positive operator A, any \(\alpha >0\), one can define the negative fractional power of operator A by the following formula [24]:

$$\begin{aligned} \begin{array}{l} A^{-\alpha }=\frac{1}{2\pi i}\int _\varGamma {\lambda ^{-\alpha } R(\lambda )}d\lambda ,\\ \\ \left( R(\lambda )=(A-\lambda I)^{-1}, \varGamma =S_1 \cup S_2\right) . \end{array} \end{aligned}$$
(8.2.26)

It is then quite easy to see that \(A^{-\alpha }\) is a bounded operator, which is an entire function of \(\alpha \), satisfying \(A^{-\alpha }=A^{-n}\) if \(\alpha \) is an integer n, and \(A^{-(\alpha +\beta )}=A^{-\alpha }A^{-\beta }\) for all \(\alpha ,\beta \in \mathbf {C}\). Using (8.2.26), we have

$$\begin{aligned} A^{-\alpha }=\frac{1}{2\pi i}\int _{-\infty }^0{\lambda ^{-\alpha } R(\lambda )}d\lambda + \frac{1}{2\pi i}\int _0^{-\infty }{\lambda ^{-\alpha } R(\lambda )}d\lambda . \end{aligned}$$
(8.2.27)

Then taking the integration along the lower and upper sides of the cut respectively: \(\lambda =se^{-\pi i}\) and \(\lambda =se^{\pi i}\), it follows that

$$\begin{aligned} A^{-\alpha }=&\frac{e^{\alpha \pi i}}{2\pi i}\int _0^\infty {s^{-\alpha } R(-s)}ds- \frac{e^{-\alpha \pi i}}{2\pi i}\int _0^\infty {s^{-\alpha } R(-s)}ds\\ =&\frac{\cos (\alpha \pi )+i\sin (\alpha \pi )}{2\pi i}\int _0^\infty {s^{-\alpha } R(-s)}ds\\&~- \frac{\cos (\alpha \pi )-i\sin (\alpha \pi )}{2\pi i}\int _0^\infty {s^{-\alpha } R(-s)}ds\\ =&\frac{\sin (\alpha \pi )}{\pi }\int _0^\infty {s^{-\alpha } R(-s)}ds\\ =&\frac{1}{\varGamma (\alpha )\varGamma (1-\alpha )}\int _0^\infty {s^{-\alpha } R(-s)}ds. \end{aligned}$$

(a) Moreover, for any \(\alpha \in (n-1,n)\), if we set

$$\begin{aligned} A^{\alpha }f=A^{\alpha -n}A^{n}f = \frac{\int _0^\infty {s^{\alpha -n} R(-s)A^{n}f}ds}{\varGamma (n-\alpha )\varGamma (1+\alpha -n)}, \end{aligned}$$
(8.2.28)

we get that

Theorem 8.2.2

Let the absolutely space

$$\begin{aligned} AC^n[0,l]: =\{f: f^{(n-1)}(x) \in C[0, l],~ f^{(n)}(x) \in L^2[0, l]\} \end{aligned}$$

and let A be the operator defined by the formula \(Af(x) = f'(x)\) with the domain

$$\begin{aligned} D(A)=\{f: f\in AC^n[0,l], ~f^{(n)}(0)=0\}. \end{aligned}$$

Then A is a positive operator in the Banach space \(AC^n[0,l]\) and

$$\begin{aligned} A^\alpha f(x)={}_0^CD_x^\alpha f(x),~~n-1<\alpha <n\end{aligned}$$
(8.2.29)

for all \(f (x) \in D(A)\).

Proof

By [16], the operator \(A+sI\) \((s\ge 0)\) has a bounded inverse and the resolvent of A is given by

$$\begin{aligned} \left( \left( A+sI\right) ^{-1}f\right) (x)=\int _0^x{e^{-s(x-y)}f(y)}dy. \end{aligned}$$
(8.2.30)

Then the operator A is a positive operator in \(AC^n[0,l]\) and Eq. (8.2.31) gives

$$\begin{aligned} A^{\alpha }f(x)= & {} \frac{\int _0^\infty {s^{\alpha -n} R(-s)A^{n}f(x)}ds}{\varGamma (n-\alpha )\varGamma (1+\alpha -n)}\\= & {} \frac{\int _0^\infty {s^{\alpha -n} \left( A+sI\right) ^{-1}f^{(n)}(x)}ds}{\varGamma (n-\alpha )\varGamma (1+\alpha -n)}\\= & {} \frac{\int _0^\infty {s^{\alpha -n} \int _0^x{e^{-s(x-y)}f^{(n)}(y)}dy}ds}{\varGamma (n-\alpha )\varGamma (1+\alpha -n)}\\= & {} \frac{\int _0^x\left[ \int _0^\infty {s^{\alpha -n}e^{-s(x-y)}}ds\right] f^{(n)}(y)dy}{\varGamma (n-\alpha )\varGamma (1+\alpha -n)}. \end{aligned}$$

Let \(s(x-y)=\lambda \). we get that

$$\begin{aligned} \int _0^\infty {s^{\alpha -n}e^{-s(x-y)}}ds=(x-y)^{n-\alpha -1}\int _0^\infty { \lambda ^{\alpha -n}e^{-\lambda }}d\lambda =(x-y)^{n-\alpha -1}\varGamma (\alpha -n+1). \end{aligned}$$

Then

$$\begin{aligned} A^{\alpha }f(x)= & {} \frac{ \int _0^x{(x-y)^{n-\alpha -1}\varGamma (\alpha -n+1)f^{(n)}(y)}dy}{\varGamma (n-\alpha )\varGamma (1+\alpha -n)}\\= & {} \frac{1}{\varGamma (n-\alpha )} \int _0^x{(x-y)^{n-\alpha -1}f^{(n)}(y)}dy \\= & {} {}_0^CD_x^{\alpha } f(x). \end{aligned}$$

This completes the proof.

(b) Similarly, for any \(\alpha \in (n-1,n)\), let

$$\begin{aligned} A^{\alpha }f=A^{n}A^{\alpha -n}f = A^{n}\frac{\int _0^\infty {s^{\alpha -n} R(-s)f}ds}{\varGamma (n-\alpha )\varGamma (1+\alpha -n)}. \end{aligned}$$
(8.2.31)

It is not difficult to obtain the following result and we omit the detail proof.

Theorem 8.2.3

Let A be the operator defined by the formula \(Af(x) = f'(x)\) with the domain

$$\begin{aligned} D(A)=\{f: f\in L^2[0,l]\}. \end{aligned}$$

Then A is a positive operator in the Banach space \(AC^n[0,l]\) and

$$\begin{aligned} A^\alpha f(x)={}_0D_x^\alpha f(x),~~n-1<\alpha <n\end{aligned}$$
(8.2.32)

for all \(f (x) \in D(A)\).

What’s more, it is worth noting that in the more recent monograph [51] and articles [20, 21, 50], the theory of pseudo-differential operators with singular symbols, and the connections between them and those three types of operators are explored. So that we can study the system (8.2.1)–(8.2.3) by using those theory of pseudo-differential operators.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ge, F., Chen, Y., Kou, C. (2018). Conclusions and Future Work. In: Regional Analysis of Time-Fractional Diffusion Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-72896-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72896-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72895-7

  • Online ISBN: 978-3-319-72896-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics