Advertisement

Bone Health in Immobile Adolescents

  • M. Zulf Mughal
Chapter

Abstract

Adolescents with disorders associated with chronic immobilization have low bone mass and are at increased risk of sustaining fragility fractures of long bones and the vertebrae. Immobilization, whether it is abrupt, progressive or chronic, disrupts normal bone growth (length, diameter, cortical and trabecular thickness) and mineralization that occurs during childhood and adolescence. This results in slender, thin and under-mineralized bones, which are prone to fragility fractures. In addition to immobilization, inadequate dietary calcium intake, vitamin D deficiency, pubertal delay/arrest and treatment with high doses of glucocorticoids may contribute to reduced bone strength in this population. While fragility fractures of long bones are associated with low bone mineral content and density, vertebral fractures can occur without significant reduction (Z-score ≥ −2) in lumbar spine bone mineral density. Thus, screening for vertebral fractures is recommended in youngsters with Duchenne muscular dystrophy who are treated with high doses of glucocorticoids. Management includes physical therapy, optimization of nutrition, correction of vitamin D deficiency, treatment of delayed puberty and judicious use of bisphosphonates on compassionate grounds to in those with fragility fractures.

Keywords

Immobilization Cerebral palsy Duchenne muscular dystrophy Spinal muscular atrophy Spinal cord injury Fractures Bone mineral content Bone mineral density Bisphosphonates Physical therapy 

References

  1. 1.
    Frost HM. Perspectives: a proposed general model of the “mechanostat”(suggestions from a new skeletal-biologic paradigm). Anat Rec. 1996;244(2):139–47.PubMedCrossRefGoogle Scholar
  2. 2.
    Parfitt AM, Travers R, Rauch F, Glorieux FH. Structural and cellular changes during bone growth in healthy children. Bone. 2000;27(4):487–94.PubMedCrossRefGoogle Scholar
  3. 3.
    Behringer M, Gruetzner S, McCourt M, Mester J. Effects of weight-bearing activities on bone mineral content and density in children and adolescents: a meta-analysis. J Bone Miner Res. 2014;29(2):467–78.PubMedCrossRefGoogle Scholar
  4. 4.
    Chevalley T, Bonjour JP, Ferrari S, Rizzoli R. The influence of pubertal timing on bone mass acquisition: a predetermined trajectory detectable five years before menarche. J Clin Endocrinol Metab. 2009;94:3424–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Wood CL, Straub V, Guglieri M, Bushby K, Cheetham T. Short stature and pubertal delay in Duchenne muscular dystrophy. Arch Dis Child. 2016. https://doi.org/10.1136/archdischild-2015-308654.
  6. 6.
    Trinh A, Wong P, Fahey MC, Brown J, Churchyard A, Strauss BJ, Ebeling PR, Fuller PJ, Milat F. Musculoskeletal and endocrine health in adults with cerebral palsy: new opportunities for intervention. J Clin Endocrinol Metabol. 2016;101(3):1190–7.CrossRefGoogle Scholar
  7. 7.
    Chevalley T, Bonjour JP, van Rietbergen B, Rizzoli R, Ferrari S. Fractures in healthy females followed from childhood to early adulthood are associated with later menarcheal age and with impaired bone microstructure at peak bone mass. J Clin Endocrinol Metab. 2012;97(11):4174–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Kindblom JM, Lorentzon M, Norjavaara E, et al. Pubertal timing predicts previous fractures and BMD in young adult men: the GOOD study. J Bone Miner Res. 2006;21(5):790–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, Hangartner TN, Huang X, Frederick MM, Winer KK, Zemel BS. Tracking of bone mass and density during childhood and adolescence. J Clin Endocrinol Metabol. 2010;95(4):1690–8.CrossRefGoogle Scholar
  10. 10.
    Gordon CM, Zemel BS, Wren TA, Leonard MB, Bachrach LK, Rauch F, Gilsanz V, Rosen CJ, Winer KK. The determinants of peak bone mass. J Pediatr. 2017;180:261–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Bonjour JP, Chevalley T. Pubertal timing, bone acquisition, and risk of fracture throughout life. Endocr Rev. 2014;35(5):820–47.PubMedCrossRefGoogle Scholar
  12. 12.
    Henderson RC, Lark RK, Gurka MJ, Worley G, Fung EB, Conaway M, Stallings VA, Stevenson RD. Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics. 2002;110(1):e5.PubMedCrossRefGoogle Scholar
  13. 13.
    Presedo A, Dabney KW, Miller F. Fractures in patients with cerebral palsy. J Pediatr Orthop. 2007;27(2):147–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Leet AI, Mesfin A, Pichard C, Launay F, Brintzenhofeszoc K, Levey EB, et al. Fractures in children with cerebral palsy. J Pediatr Orthop. 2006;26:624–7; 10PubMedCrossRefGoogle Scholar
  15. 15.
    Stevenson RD, Conaway M, Barrington JW, Cuthill SL, Worley G, Henderson RC. Fracture rate in children with cerebral palsy. Pediatr Rehabil. 2006;9(4):396–403.PubMedCrossRefGoogle Scholar
  16. 16.
    Brunner R, Doderlein L. Pathological fractures in patients with cerebral palsy. J Pediatr Orthop B. 1996;5:232–8.PubMedGoogle Scholar
  17. 17.
    Fujak A, Kopschina C, Forst R, Gras F, Mueller LA, Forst J. Fractures in proximal spinal muscular atrophy. Arch Orthop Trauma Surg. 2010;130(6):775–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Lazo MG, Shirazi P, Sam M, Giobbie-Hurder A, Blacconiere MJ, Muppidi M. Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord. 2001;39(4):208–14.PubMedCrossRefGoogle Scholar
  19. 19.
    Harcke HT, Taylor A, Bachrach S, Miller F, Henderson RC. Lateral femoral scan: an alternative method for assessing bone mineral density in children with cerebral palsy. Pediatr Radiol. 1998;28:241–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Henderson RC, Lark RK, Newman JE, Kecskemthy H, Fung EB, Renner JB, et al. Pediatric reference data for dual X-ray absorptiometric measures of normal bone density in the distal femur. Am J Radiol. 2002;178:439–43.Google Scholar
  21. 21.
    Zemel BS, Stallings VA, Leonard MB, Paulhamus DR, Kecskemethy HH, Harcke HT, Henderson RC. Revised pediatric reference data for the lateral distal femur measured by Hologic discovery/Delphi dual-energy X-ray absorptiometry. J Clin Densitom. 2009;12(2):207–18.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kilpinen-Loisa PÄ, Paasio T, Soiva M, RITANEN U, Lautala P, Palmu P, Pihko H, Mäkitie O. Low bone mass in patients with motor disability: prevalence and risk factors in 59 Finnish children. Dev Med Child Neurol. 2010;52(3):276–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Sbrocchi AM, Rauch F, Jacob P, McCormick A, McMillan HJ, Matzinger MA, Ward LM. The use of intravenous bisphosphonate therapy to treat vertebral fractures due to osteoporosis among boys with Duchenne muscular dystrophy. Osteoporos Int. 2012;23(11):2703–11.PubMedCrossRefGoogle Scholar
  24. 24.
    Ma J, McMillan HJ, Karaguzel G, Goodin C, Wasson J, Matzinger MA, et al. The time to and determinants of first fractures in boys with Duchenne muscular dystrophy. Osteoporos Int. 2017;28:597–608.PubMedCrossRefGoogle Scholar
  25. 25.
    Bishop N, Arundel P, Clark E, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 Pediatric Official Positions. J Clin Densitom. 2014;17:275–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Crabtree NJ, Chapman S, Högler W, Hodgson K, Chapman D, Bebbington N, Shaw NJ. Vertebral fractures assessment in children: evaluation of DXA imaging versus conventional spine radiography. Bone. 2017;97:168–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Colver A, Fairhurst C, Pharoah PO. Cerebral palsy. Lancet. 2013;19. https://doi.org/10.1016/S0140-6736(13)61835-8.
  28. 28.
    Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–23.PubMedCrossRefGoogle Scholar
  29. 29.
    Ho S-T. Review of fractures and low bone mass in children with cerebral palsy. J Orthop Trauma Rehabil. 2012;16(2):45–50.CrossRefGoogle Scholar
  30. 30.
    Ward KA, Caulton JM, Adams JE, Mughal MZ. Perspective: cerebral palsy as a model of bone development in the absence of postnatal mechanical factors. J Musculoskelet Neuronal Interact. 2006;6:154–9.PubMedGoogle Scholar
  31. 31.
    Mergler S, Evenhuis HM, Boot AM, De Man SA, Bindels-De Heus KG, Huijbers WA, Penning C. Epidemiology of low bone mineral density and fractures in children with severe cerebral palsy: a systematic review. Dev Med Child Neurol. 2009;51:773–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Uddenfeldt Wort U, Nordmark E, Wagner P, Düppe H, Westbom L. Fractures in children with cerebral palsy: a total population study. Dev Med Child Neurol. 2013;55(9):821–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Lingham S, Joester J. Spontaneous fractures in children and adolescents with cerebral palsy. BMJ. 1994;309:265.CrossRefGoogle Scholar
  34. 34.
    Sturm PF, Alman BA, Christie BL. Femur fractures in institutionalized patients after hip spica immobilization. J Pediatr Orthop. 1993;13(2):246–8.PubMedGoogle Scholar
  35. 35.
    Lubicky JP, Bernotas S, Herman JE. Complications related to postoperative casting after surgical treatment of subluxed/ dislocated hips in patients with cerebral palsy. Orthopaedics. 2003;26(26):407–11.Google Scholar
  36. 36.
    Henderson RC, Kairalla JA, Barrington JW, Abbas A, Stevenson RD. Longitudinal changes in bone density in children and adolescents with moderate to severe cerebral palsy. J Pediatr. 2005;146:769–75.PubMedCrossRefGoogle Scholar
  37. 37.
    Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, Plotkin H, Stevenson RD, Szalay E, Wong B, Kecskemethy HH. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res. 2010;25(3):520–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Binkley T, Johnson J, Vogel L, Kecskemethy H, Henderson R, Specker B. Bone measurements by peripheral quantitative computed tomography (pQCT) in children with cerebral palsy. J Pediatr. 2005;147(6):791–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Wren TA, Lee DC, Kay RM, Dorey FJ, Gilsanz V. Bone density and size in ambulatory children with cerebral palsy. Dev Med Child Neurol. 2011;53(2):137–41.PubMedCrossRefGoogle Scholar
  40. 40.
    Modlesky CM, Whitney DG, Singh H, Barbe MF, Kirby JT, Miller F. Underdevelopment of trabecular bone microarchitecture in the distal femur of nonambulatory children with cerebral palsy becomes more pronounced with distance from the growth plate. Osteoporos Int. 2015;26(2):505–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Bianchi ML, Leonard MB, Bechtold S, Högler W, Mughal MZ, Schönau E, Sylvester FA, Vogiatzi M, van den Heuvel-Eibrink MM, Ward L. Bone health in children and adolescents with chronic diseases that may affect the skeleton: the 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17(2):281–94.PubMedCrossRefGoogle Scholar
  42. 42.
    Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin C, DMD Care Considerations Working Group. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocialmanagement. Lancet Neurol. 2010;9(1):77–93.PubMedCrossRefGoogle Scholar
  43. 43.
    Moxley RT III, Pandya S, Ciafaloni E, Fox DJ, Campbell K. Change in natural history of Duchenne muscular dystrophy with long-term corticosteroid treatment: implications for management. J Child Neurol. 2010;25(9):1116–29.PubMedCrossRefGoogle Scholar
  44. 44.
    Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2016. (5):CD003725.Google Scholar
  45. 45.
    Lebel DE, Corston JA, McAdam LC, Biggar WD, Alman BA. Glucocorticoid treatment for the prevention of scoliosis in children with Duchenne muscular dystrophy: long-term follow-up. J Bone Joint Surg Am Vol. 2013;95(12):1057–61.CrossRefGoogle Scholar
  46. 46.
    Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000;20:71–4.PubMedGoogle Scholar
  47. 47.
    Bianchi ML, Mazzanti A, Galbiati E, Saraifoger S, Dubini A, Cornelio F, Morandi L. Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos Int. 2003;14(9):761–7.PubMedCrossRefGoogle Scholar
  48. 48.
    King WM, Ruttencutter R, Nagaraja HN, et al. Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology. 2007;68(19):1607–13.PubMedCrossRefGoogle Scholar
  49. 49.
    McDonald DG, Kinali M, Gallagher AC, Mercuri E, Muntoni F, Roper H, et al. Fracture prevalence in Duchenne muscular dystrophy. Dev Med Child Neurol. 2002;44:695–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Buckner JL, Bowden SA, Mahan JD. Optimizing bone health in Duchenne muscular dystrophy. Int J Endocrinol. 2015;2015:928385.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    von Scheven E, Corbin KJ, Stagi S, et al. Glucocorticoid-associated osteoporosis in chronic inflammatory diseases: epidemiology, mechanisms, diagnosis, and treatment. Curr Osteoporos Rep. 2014;12(3):289–99.CrossRefGoogle Scholar
  52. 52.
    Hahn TJ, Halstead LR, Teitelbaum SL, Hahn BH. Altered mineral metabolism in glucocorticoid-induced osteopenia. Effect of 25-hydroxyvitamin D administration. J Clin Investig. 1979;64(2):655.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Seeman E. Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metabol. 2001;86(10):4576–84.CrossRefGoogle Scholar
  54. 54.
    Mayo AL, Craven BC, McAdam LC, Biggar WD. Bone health in boys with Duchenne muscular dystrophy on long-term daily deflazacort therapy. Neuromuscul Disord. 2012;22(12):1040–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Crabtree NJ, Roper H, McMurchie H, Shaw NJ. Regional changes in bone area and bone mineral content in boys with Duchenne muscular dystrophy receiving corticosteroid therapy. J Pediatr. 2010;156(3):450–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Prior TW, Snyder PJ, Rink BD, Pearl DK, Pyatt RE, Mihal DC, Conlan T, Schmalz B, Montgomery L, Ziegler K, Noonan C, Hashimoto S, Garner S. Newborn and carrier screening for spinal muscular atrophy. Am J Med Genet A. 2010;152A(7):1608–16.PubMedCrossRefGoogle Scholar
  57. 57.
    Farrar MA, Vucic S, Johnston HM, du Sart D, Kiernan MC. Pathophysiological insights derived by natural history and motor function of spinal muscular atrophy. J Pediatr. 2013;162(1):155–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Vestergaard P, Glerup H, Steffensen BF, Rejnmark L, Rahbek J, Mosekilde L. Fracture risk in patients with muscular dystrophy and spinal muscular atrophy. J Rehabil Med. 2001;33(4):150–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Khatri IA, Chaudhry US, Seikaly MG, Browne RH, Iannaccone ST. Low bone mineral density in spinal muscular atrophy. J Clin Neuromuscul Dis. 2008;10(1):11–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Febrer A, Vigo M, Rodríguez N, Medina J, Colomer J, Nascimento A. Fractures in spinal muscular atrophy. Rev Neurol. 2013;57(5):207–11.PubMedGoogle Scholar
  61. 61.
    Granata C, Giannini S, Villa D, Bonfiglioli SS, Merlini L. Fractures in myopathies. La Chirurgia degli organi di movimento. 1990;76(1):39–45.Google Scholar
  62. 62.
    Vai S, Bianchi ML, Moroni I, Mastella C, Broggi F, Morandi L, Arnoldi MT, Bussolino C, Baranello G. Bone and spinal muscular atrophy. Bone. 2015;79:116–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Wasserman HM, Hornung LN, Stenger PJ, Rutter MM, Wong BL, Rybalsky I, Khoury JC, Kalkwarf HJ. Low bone mineral density and fractures are highly prevalent in pediatric patients with spinal muscular atrophy regardless of disease severity. Neuromuscul Disord. 2017;27(4):331–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Jiang SD, Dai LY, Jiang LS. Osteoporosis after spinal cord injury. Osteoporos Int. 2006;17(2):180–92.PubMedCrossRefGoogle Scholar
  65. 65.
    Modlesky CM, Majumdar S, Narasimhan A, Dudley GA. Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. J Bone Miner Res. 2004;19(1):48–55.PubMedCrossRefGoogle Scholar
  66. 66.
    Lauer R, Johnston TE, Smith BT, Mulcahey MJ, Betz RR, Maurer AH. Bone mineral density of the hip and knee in children with spinal cord injury. J Spinal Cord Med. 2007;30(Suppl 1):S10–4.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Biggin A, Briody JN, Ramjan KA, Middleton A, Waugh MC, Munns CF. Evaluation of bone mineral density and morphology using pQCT in children after spinal cord injury. Dev Neurorehabil. 2013;16(6):391–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Zerwekh JE, Ruml LA, Gottschalk F, Pak CY. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turn- over, and calcium homeostasis in eleven normal subjects. J Bone Miner Res. 1998;13:1594–601.PubMedCrossRefGoogle Scholar
  69. 69.
    Tori JA, Hill LL. Hypercalcemia in children with spinal cord injury. Arch Phys Med Rehabil. 1978;59(10):443–6.PubMedGoogle Scholar
  70. 70.
    Lteif AN, Zimmerman D. Bisphosphonates for treatment of childhood hypercalcemia. Pediatrics. 1998;102(4):990–3.PubMedCrossRefGoogle Scholar
  71. 71.
    Henderson RC. Vitamin D levels in non institutionalized children with cerebral palsy. J Child Neurol. 1997;12(7):443–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Bischof F, Basu D, Pettifor JM. Pathological long-bone fractures in residents with cerebral palsy in a long-term care facility in South Africa. Dev Med Child Neurol. 2002;44(2):119–22.PubMedCrossRefGoogle Scholar
  73. 73.
    Fehlings D, Switzer L, Agarwal P, Wong C, Sochett E, Stevenson R, Sonnenberg L, Smile S, Young E, Huber J, MILO-MANSON GO. Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: a systematic review. Dev Med Child Neurol. 2012;54(2):106–16.PubMedCrossRefGoogle Scholar
  74. 74.
    Ozel S, Switzer L, Macintosh A, Fehlings D. Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: an update. Dev Med Child Neurol. 2016;58(9):918–23.PubMedCrossRefGoogle Scholar
  75. 75.
    Bianchi ML, Morandi L, Andreucci E, Vai S, Frasunkiewicz J, Cottafava R. Low bone density and bone metabolism alterations in Duchenne muscular dystrophy: response to calcium and vitamin D treatment. Osteoporosis international. 2011 1;22(2):529–39.Google Scholar
  76. 76.
    Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339(14):947–52.Google Scholar
  77. 77.
    Howe W, Davis E, Valentine J. Pamidronate improves pain, wellbeing, fracture rate and bone density in 14 children and adolescents with chronic neurological conditions. Dev Neurorehabil. 2010;13(1):31–6.Google Scholar
  78. 78.
    Sees JP, Sitoula P, Dabney K, Holmes L Jr, Rogers KJ, Kecskemethy HH, Bachrach S, Miller F. Pamidronate treatment to prevent reoccurring fractures in children with cerebral palsy. J Pediatr Orthop. 2016;36(2):193–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Harcke HT, Stevenson KL, Kecskemethy HH, Bachrach SJ, Grissom LE. Fracture after bisphosphonate treatment in children with cerebral palsy: the role of stress risers. Pediatr Radiol. 2012;42:76–81.PubMedCrossRefGoogle Scholar
  80. 80.
    Hawker GA, Ridout R, Harris VA, Chase CC, Fielding LJ, Biggar WD. Alendronate in the treatment of low bone mass in steroid-treated boys with Duchennes muscular dystrophy. Arch Phys Med Rehabil. 2005;86:284–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Srinivasan R, Rawlings D, Wood CL, Cheetham T, Moreno AC, Mayhew A, Eagle M, Guglieri M, Straub V, Owen C, Bushby K. Prophylactic oral bisphosphonate therapy in Duchenne muscular dystrophy. Muscle Nerve. 2016;54(1):79–85.PubMedCrossRefGoogle Scholar
  82. 82.
    Ooi HL, Briody J, McQuade M, Munns CF. Zoledronic acid improves bone mineral density in pediatric spinal cord injury. J Bone Miner Res. 2012;27(7):1536–40.PubMedCrossRefGoogle Scholar
  83. 83.
    Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res. 2004;19(3):360–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Saquetto M, Carvalho V, Silva C, Conceição C, Gomes-Neto M. The effects of whole body vibration on mobility and balance in children with cerebral palsy: a systematic review with meta-analysis. J Musculoskelet Neuronal Interact. 2015;15(2):137.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Gusso S, Munns CF, Colle P, Derraik JG, Biggs JB, Cutfield WS, Hofman PL. Effects of whole-body vibration training on physical function, bone and muscle mass in adolescents and young adults with cerebral palsy. Scientific Rep. 2016;6:22518.CrossRefGoogle Scholar
  86. 86.
    Ruggiero SL, Dodson TB. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaws-2014 update. J Oral Maxillofac Surg. 2014;72(12):2381–2.PubMedCrossRefGoogle Scholar
  87. 87.
    Vandone AM, Donadio M, Mozzati M, et al. Impact of dental care in the prevention of bisphosphonate-associated osteonecrosis of the jaw: a single-center clinical experience. Ann Oncol. 2012;23:193.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Paediatric EndocrinologyRoyal Manchester Children’s HospitalManchesterUK

Personalised recommendations