Skip to main content

Impact of the Light Microclimate on Photosynthetic Activity of Grape Berry (Vitis vinifera): Insights for Radiation Absorption Mitigations’ Measures

  • Chapter
  • First Online:
Theory and Practice of Climate Adaptation

Part of the book series: Climate Change Management ((CCM))

Abstract

IPCC’s predicted rise in mean temperatures, increase in the frequency of summer heat waves and decrease in soil water availability for the Mediterranean regions will have an impact on foliar and fruit photosynthesis. But mitigation measures aiming reducing radiation absorption by the vine canopy may pose light limitations to grape berry photosynthesis. This work focused on the influence of the light level of the canopy microenvironment where clusters develop on the photosynthetic competence of grape berry tissues (exocarp and seed integument) throughout fruit growing season by imaging PAM fluorometry. Clusters from low (LL), medium (ML) and high light (HL) microclimates were sampled from green to mature stages. Both tissues showed high maximum quantum efficiency (Fv/Fm) and photosynthetic capacity (ETRm) at the green stage, exocarp extending to mature stages while seed photosynthetic activity was more restricted to green stage. The light microclimate had a significant effect on the photosynthesis of both tissues but also in their photosynthetic phenotypes along the season. In LL, both tissues showed lower activity in all stages, higher susceptibility to photoinhibition and lack of response to short-term light acclimation; ML and HL grapes adjust their activity peaking at different light intensities, were more responsive to light changing conditions, recover better from high light. Overall, our results suggest that not only light/temperature stress conditions imposed by climate changes but also viticulture practices causing changes in canopy light microclimates may have significant impacts on grape berry photosynthesis and hence in fruit development and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aschan, G., & Pfanz, H. (2003). Non-foliar photosynthesis—A strategy of additional carbon acquisition. Flora, 198, 81–97. https://doi.org/10.1078/0367-2530-00080.

    Article  Google Scholar 

  • Aschan, G., Pfanz, H., Vodnik, D., & Batič, F. (2005). Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.). Photosynthetica, 43(1), 55–64. https://doi.org/10.1007/s11099-005-5064-x.

    Article  CAS  Google Scholar 

  • Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759.

    Article  CAS  Google Scholar 

  • Blanke, M. M., & Lenz, F. (1989). Fruit photosynthesis. Plant, Cell and Environment, 12, 31–46. http://doi.org/doi:10.1111/j.1365-3040.1989.tb01914.x.

    Article  CAS  Google Scholar 

  • Breia, R., Vieira, S., Da Silva, J. M., Gerós, H., & Cunha, A. (2013). Mapping grape berry photosynthesis by chlorophyll fluorescence imaging: The effect of saturating pulse intensity in different tissues. Photochemistry and Photobiology, 89(3), 579–585. https://doi.org/10.1111/php.12046.

    Article  CAS  Google Scholar 

  • Bron, I. U., Ribeiro, R. V., Azzolini, M., Jacomino, A. P., & Machado, E. C. (2004). Chlorophyll fluorescence as a tool to evaluate the ripening of “Golden” papaya fruit. Postharvest Biology and Technology, 33(2), 163–173. https://doi.org/10.1016/j.postharvbio.2004.02.004.

    Article  CAS  Google Scholar 

  • Calucci, L., Capocchi, A., Galleschi, L., Ghiringhelli, S., Pinzino, C., Saviozzi, F., et al. (2004). Antioxidants, free radicals, storage proteins, puroindolines, and proteolytic activities in bread wheat (Triticum aestivum) seeds during accelerated aging. Journal of Agricultural and Food Chemistry, 52(13), 4274–4281. https://doi.org/10.1021/jf0353741.

    Article  CAS  Google Scholar 

  • Carrara, S., Pardossi, A., Soldatini, G. F., Tognoni, F., & Guidi, L. (2001). Photosynthetic activity of ripening tomato fruit. Photosynthetica. http://doi.org/10.1023/A:1012495903093.

  • Chen, L. S., & Cheng, L. (2007). The sun-exposed peel of apple fruit has a higher photosynthetic capacity than the shaded peel. Functional Plant Biology, 34(11), 1038–1048. https://doi.org/10.1071/FP07111.

    Article  CAS  Google Scholar 

  • Chuine, I., Yiou, P., Viovy, N., Seguin, B., Daux, V., & Ladurie, E. L. (2004). Historical phenology: Grape ripening as a past climate indicator. Nature, 432, 289–290.

    Article  CAS  Google Scholar 

  • COM. (2009). Comissão das Comunidade Europeias. Adaptação Às Alterações Climáticas: Para Um Quadro de Acção Europeus Alterações Climáticas: Para Um Quadro de Acção Europeu. Bruxelas.

    Google Scholar 

  • Correia, C., Dinis, Lia-Tânia, Pinheiro, R., Fraga, H., Ferreira, H., Gonçalves, I., et al. (2014). Climate change and adaptation strategies for viticulture. Journal of International Scientific Publications: Agriculture and Food, 2, 424–429.

    Google Scholar 

  • Demmig-Adams, B., & Adams, W. W. (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 43(1), 599–626. http://doi.org/10.1146/annurev.pp.43.060192.003123.

    Article  CAS  Google Scholar 

  • Dinis, L. T., Ferreira, H., Pinto, G., Bernardo, S., Correia, C. M., & Moutinho-Pereira, J. (2016). Kaolin-based, foliar reflective film protects photosystem II structure and function in grapevine leaves exposed to heat and high solar radiation. Photosynthetica, 54(1), 47–55. https://doi.org/10.1007/s11099-015-0156-8.

    Article  CAS  Google Scholar 

  • Ferroni, L., Pantaleoni, L., Baldisserotto, C., Aro, E. M., & Pancaldi, S. (2013). Low photosynthetic activity is linked to changes in the organization of photosystem II in the fruit of Arum italicum. Plant Physiology and Biochemistry, 63, 140–150. https://doi.org/10.1016/j.plaphy.2012.11.023.

    Article  CAS  Google Scholar 

  • Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., & Santos, J. A. (2012). An overview of climate change impacts on European viticulture. Food and Energy Security, 1(2), 94–110. https://doi.org/10.1002/fes3.14.

    Article  Google Scholar 

  • Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., & Santos, J. A. (2014). Climate factors driving wine production in the Portuguese Minho region. Agricultural and Forest Meteorology, 185, 26–36. https://doi.org/10.1016/j.agrformet.2013.11.003.

    Article  Google Scholar 

  • Fraga, H., Santos, J. A., Malheiro, A. C., Oliveira, A. A., Moutinho-Pereira, J., & Jones, G. V. (2015). Climatic suitability of Portuguese grapevine varieties and climate change adaptation. International Journal of Climatology, 36(1), 1–12. https://doi.org/10.1002/joc.4325.

    Article  Google Scholar 

  • Genty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)—General Subjects, 990(1), 87–92. http://doi.org/10.1016/S0304-4165(89)80016-9.

    Article  CAS  Google Scholar 

  • Greer, D. H., Weedon, M. M., & Weston, C. (2011). Reductions in biomass accumulation, photosynthesis in situ and net carbon balance are the costs of protecting Vitis vinifera “Semillon” grapevines from heat stress with shade covering. AoB PLANTS, 11(1), 1–13. https://doi.org/10.1093/aobpla/plr023.

    Article  CAS  Google Scholar 

  • Haselgrove, L., Botting, D., Heeswijck, R., Høj, P. B., Dry, P. R., Ford, C., et al. (2000). Canopy microclimate and berry composition: The effect of bunch exposure on the phenolic composition of Vitis vinifera L cv. Shiraz grape berries. Australian Journal of Grape and Wine Research, 6(2), 141–149. https://doi.org/10.1111/j.1755-0238.2000.tb00173.x.

    Article  CAS  Google Scholar 

  • Howitt, C. A., & Pogson, B. J. (2006). Carotenoid accumulation and function in seeds and non-green tissues. Plant, Cell and Environment. https://doi.org/10.1111/j.1365-3040.2005.01492.x.

    Article  Google Scholar 

  • Iacono, F., & Sommer, K. J. (1996). Photoinhibition of photosynthesis and photorespiration in Vitis vinifera L. under field conditions - effects of light climate and leaf position. Australian Journal of Grape and Wine Research, 2(1), 1–11. Retrieved from http://dx.doi.org/10.1111/j.1755-0238.1996.tb00089.x.

    Article  Google Scholar 

  • IPCC (International Panel on Climate Change). (2014). Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge).

    Google Scholar 

  • Jones, G. V., & Davis, R. E. (2000). Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. American Journal of Enology and Viticulture, 51(3), 249–261.

    Google Scholar 

  • Kennedy, B. Y. J. (2002). Understanding grape berry development. Practical Winery and Vineyard, 1–5.

    Google Scholar 

  • Kolb, C. A., Wirth, E., Kaiser, W. M., Meister, A., Riederer, M., & Pfündel, E. E. (2006). Noninvasive evaluation of the degree of ripeness in grape berries (Vitis Vinifera L Cv. Bacchus and Silvaner) by chlorophyll fluorescence. Journal of Agricultural and Food Chemistry, 54(September), 299–305. http://doi.org/10.1021/jf052128b.

    Article  CAS  Google Scholar 

  • Leeuwen, C. Van, & Darriet, P. (2016). The impact of climate change on viticulture and wine quality. Journal of Wine Economics, 11(1), 150–167. https://doi.org/10.1017/jwe.2015.21.

    Article  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. https://doi.org/10.1016/0076-6879(87)48036-1.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K., Ač, A., Marek, M. V., Kalina, J., & Urban, O. (2007). Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry, 45(8), 577–588. https://doi.org/10.1016/j.plaphy.2007.04.006.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K., & Babani, F. (2004). Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In Chlorophyll a Fluorescence: A Signature of Photosynthesis (Papageorgi, pp. 713–736). Springer Netherlands.

    Google Scholar 

  • Maluf, M. P., Saab, I. N., Wurtzel, E. T., & Sachs, M. M. (1997). The viviparous12 maize mutant is deficient in abscisic acid, carotenoids, and chlorophyll synthesis. Journal of Experimental Botany, 48(311), 1259–1268. https://doi.org/10.1093/jxb/48.6.1259.

    Article  CAS  Google Scholar 

  • Moutinho-Pereira, J., Magalhães, N., Gonçalves, B., Bacelar, E., Brito, M., & Correia, C. (2007). Gas exchange and water relations of three Vitis vinifera L. cultivars growing under Mediterranean climate. Photosynthetica, 45(2), 202–207. https://doi.org/10.1007/s11099-007-0033-1.

    Article  CAS  Google Scholar 

  • Moutinho-Pereira, J. M., Correia, C. M., Gonçalves, B. M., Bacelar, E. A., & Torres-Pereira, J. M. (2004). Leaf gas exchange and water relations of grapevines grown in three different conditions. Photosynthetica, 42(1), 81–86. https://doi.org/10.1023/B:PHOT.0000040573.09614.1d.

    Article  Google Scholar 

  • Moutinho-Pereira, J., Magalhães, J. M., Correia, C., & Torres-Peireira, J. M. (2003). Effects of NW-SE row orientation on grapevine physiology under Mediterranean field conditions. In Agricoltura Mediterranea (Vol. 133, pp. 218–225). Pacini.

    Google Scholar 

  • Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13), 3983–3998. https://doi.org/10.1093/jxb/ert208.

    Article  CAS  Google Scholar 

  • OIV. (2015). International Organisation of Vine and Wine. Vine and Wine Outlook 20102011.

    Google Scholar 

  • Peel, B. L., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification.pdf. Hydrology and Earth System Sciences, 11, 1633–1644. http://doi.org/10.5194/hessd-4-439-2007.

    Article  Google Scholar 

  • Pilati, S., Perazzolli, M., Malossini, A., Cestaro, A., Demattè, L., Fontana, P., et al. (2007). Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. BMC Genomics, 8(1), 428. https://doi.org/10.1186/1471-2164-8-428.

    Article  Google Scholar 

  • Platt, T., Gallegos, C. L., & Harrison, W. G. (1980). Photoinibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 38(4), 687–701.

    Google Scholar 

  • Puthur, J. T., & Pardha Saradhi, P. (2004). Developing embryos of Sesbania sesban have unique potential to photosynthesize under high osmotic environment. Journal of Plant Physiology, 161(10), 1107–1118. https://doi.org/10.1016/j.jplph.2004.03.002.

    Article  CAS  Google Scholar 

  • Ranjan, S., Singh, R., Soni, D. K., Pathre, U. V., & Shirke, P. A. (2012). Photosynthetic performance of Jatropha curcas fruits. Plant Physiology and Biochemistry, 52, 66–76. https://doi.org/10.1016/j.plaphy.2011.11.008.

    Article  CAS  Google Scholar 

  • Reynolds, A. G., & Heuvel, J. E. V. (2009). Influence of grapevine training systems on vine growth and fruit composition: A review. American Journal of Enology and Viticulture, 60(3), 251–268.

    Google Scholar 

  • Ruiz-Sola, M. Á., & Rodríguez-Concepción, M. (2012). Carotenoid biosynthesis in arabidopsis: A colorful pathway. The Arabidopsis Book, 10. http://doi.org/10.1199/tab.0158.

  • Ruuska, S. A., Schwender, J., & Ohlrogge, J. B. (2004). The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiology, 136, 2700–2709.

    Article  CAS  Google Scholar 

  • Schreiber, U. (2004). Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: An overview. In C. George (Ed.), Chlorophyll a fluorescence: A signature of photosynthesis (pp. 279–319). Dordrecht, The Netherlands: Kluwer Academic.

    Google Scholar 

  • Schultz, H. R. (1995). Grape canopy structure, light microclimate and photosynthesis. I. A two-dimensional model of the spatial distribution of surface area densities and leaf ages in two canopy systems. Vitis, 34(4), 211–215.

    Google Scholar 

  • Seifert, B., Pflanz, M., & Zude, M. (2014). Spectral shift as advanced index for fruit chlorophyll breakdown. Food and Bioprocess Technology, 7(7), 2050–2059. https://doi.org/10.1007/s11947-013-1218-1.

    Article  CAS  Google Scholar 

  • Smart, R. E. (1974). Photosynthesis by Grapevine Canopies. Journal of Applied Ecology, 11(3), 997–1006.

    Article  Google Scholar 

  • Smart, R. E. (1987). Influence of light on composition and quality of grapes. Acta Horticulturae, 206, 37–48. http://doi.org/10.17660/ActaHortic.1987.206.2.

  • Smart, R. E., Bobinson, J. B., Due, G. R., & Brien, C. (1985). Canopy microclimate modification for cultivar Shiraz I. Definition of canopy microclimate. Vitis, 24, 17–31.

    Google Scholar 

  • Smillie, R. M., Hetherington, S. E., & Davies, W. J. (1999). Photosynthetic activity of the calyx, green shoulder, pericarp, and locular parenchyma of tomato fruit. Journal of Experimental Botany, 50(334), 707–718. https://doi.org/10.1093/jexbot/50.334.707.

    Article  CAS  Google Scholar 

  • Young, A. J., Phillip, D., & Savill, J. (1997). Carotenoids in higher plant photosynthesis. In M. Pessaraki (Ed.), Handbook of photosynthesis (pp. 575–596). New York: Marcel Dekker Inc.

    Google Scholar 

Download references

Acknowledgements

This work is supported by: European Investment Funds by FEDER/COMPETE/POCI– Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cunha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garrido, A., Breia, R., Serôdio, J., Cunha, A. (2018). Impact of the Light Microclimate on Photosynthetic Activity of Grape Berry (Vitis vinifera): Insights for Radiation Absorption Mitigations’ Measures. In: Alves, F., Leal Filho, W., Azeiteiro, U. (eds) Theory and Practice of Climate Adaptation. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-319-72874-2_24

Download citation

Publish with us

Policies and ethics