Skip to main content

Students’ Reflections About a Course for Learning Inferential Reasoning Via Simulations

  • Chapter
  • First Online:
Teaching and Learning Stochastics

Part of the book series: ICME-13 Monographs ((ICME13Mo))

  • 1018 Accesses

Abstract

This chapter discusses the development of a one semester course for preservice teachers at the university level based on intensive use of simulation software. The course is designed to deepen the understanding of inference. Some design ideas for the course are presented. One major aspect of students’ work was to reflect in written form on their own statistical learning process for each of the five topics. An analysis of these reflections shows that the statistical learning process is closely related with the practiced handling of the software. Many positive statements in the reflections show where the design of the course worked well and which aspects have been understood by students. Statements concerning difficulties identify aspects for a future redesign of the course.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Batanero, C., Biehler, R., Maxara, C., Engel, J., & Vogel, M. (2005, June). Using simulation to bridge teachers content and pedagogical knowledge in probability. Paper presented at the 15th ICMI Study Conference: The Professional Education and Development of Teachers of Mathematics. Aguas de Lindoia, Brazil: ICMI.

    Google Scholar 

  • Cobb, G. (2007). The introductory statistics course: A ptolemaic curriculum? Technology Innovations in Statistics Education, 1(1), 1–15.

    Google Scholar 

  • Cobb, P., Confrey, J., deSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.

    Google Scholar 

  • Doerr, H. M., & Pratt, D. (2008). The learning of mathematics and mathematical modeling. In M. K. Heid & G. W. Blume (Eds.), Research on technology and the teaching and learning of mathematics: Research syntheses (pp. 259–285). Charlotte: Information Age Publishing.

    Google Scholar 

  • Drijvers, P. (2012). Teachers transforming resources into orchestrations. In G. Gueudet, B. Pepin & L. Trouche (Eds.), From text to ‘lived’ resources (pp. 265–281). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in mathematics, 75(2), 213–234.

    Google Scholar 

  • Engel, J. (2007. August). On teaching the bootstrap. Paper presented at the International Statistical Institute 56th Session, Lisbon: International Statistical Institute. https://iase-web.org/documents/papers/isi56/IPM40_Engel.pdf. Accessed 1 July, 2017.

  • Garfield, J., & Ben-Zvi, D. (2008). Developing students’ statistical reasoning. New York: Springer.

    Google Scholar 

  • Garfield, J., delMas, J., & Zieffler, A. (2012). Developing statistical modelers and thinkers in an introductory, tertiary-level statistics course. ZDM Mathematics Education 44(7), 883–898.

    Google Scholar 

  • GDM, Working Group of Stochastics (2003). Empfehlung zu Zielen und zur Gestaltung des Stochastikunterrichts (Recommendations for goals and configuration of statistics lessons). Stochastik in der Schule, 23(3), 21–26.

    Google Scholar 

  • Konold, C., Harradine, A. & Kazak, S. (2007). Understanding distributions by modeling them. International Journal of Computers for Mathematical Learning 12(3), 217–230.

    Google Scholar 

  • Konold, C., & Kazak, S. (2008). Reconnecting data and chance. Technology Innovations in Statistics Education 2(1). http://escholarship.org/uc/item/38p7c94v. Accessed: 30 June 2017.

  • Konold, C., & Miller, C. (2011). TinkerPlots TM Version 2. Emeryville, CA: KCP.

    Google Scholar 

  • Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modelling perspective on mathematics teaching, learning and problem solving. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism. models and modelling perspectives on mathematics problem solving, learning, and teaching (pp. 3–33). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In R. Lesh, & A. Kelly (Eds.), Handbook of research design in mathematics and science education (pp. 591–645). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Maxara, C. & Biehler, R. (2006). Students’ probabilistic simulation and modeling competence after a computer-intensive elementary course in statistics and probability. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. Salvador de Bahia (Brazil); International Statistical Institute. https://www.stat.auckland.ac.nz/~iase/publications/17/7C1_MAXA.pdf. Accessed 1 July, 2017.

  • Mayring, P. (2015). Qualitative content analysis: Theoretical background and procedures. In A.Bikner-Ahsbahs, C Knipping,. & N. Presmeg, (Eds.), Approaches to qualitative research in mathematics education (pp. 365–380). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Noll, J. & Kirin, D. (2016). Student approaches to constructing statistical models using TinkerPlots. Technology Innovations in Statistics Education 9(1). http://escholarship.org/uc/item/05b643r9. Accessed: 30 June 2017.

  • Pfannkuch, M. (2011). The role of context in developing informal statistical inferential reasoning: A classroom study. Mathematical Thinking and Learning 13(1–2), 27–46. doi: https://doi.org/10.1080/10986065.2011.538302.

  • Podworny, S. & Biehler, R. (2014). A learning trajectory on hypothesis testing with TinkerPlots - design and exploratory evaluation. In K. Makar; B. de Sousa; R. Gould (Eds.), Proceedings of the Ninth International Conference on Teaching Statistics Flagstaff, AR: International Statistical Institute. http://iase-web.org/icots/9/proceedings/pdfs/ICOTS9_9A2_PODWORNY.pdf. Accessed: 30 June 2017.

  • Pratt, D., & Ainley, J. (2014). Chance re-encounters: ‘Computers in probability education’ revisited. In T. Wassong, D. Frischemeier, P. R. Fischer, R. Hochmuth, & P. Bender (Eds.), Mit Werkzeugen Mathematik und Stochastik lernen. Using tools for mathematics and statistics (pp. 165–177). Wiesbaden: Springer.

    Google Scholar 

  • Rabardel, P. (2002). People and technology. Occasional paper. Université Paris 8. https://hal.archives-ouvertes.fr/hal-01020705. Accessed: 30 June 2017.

  • Stratmann, J., Preußler, A., & Kerres, U. (2009). Lernerfolg und Kompetenz: Didaktische Potentiale von „Portfolios“ im Hochschulstudium (Learning success and competency: Didactical potential of “portfolios” in universities). Zeitschrift für Hochschulentwicklung 4(1), 90–103.

    Google Scholar 

  • Voigt, J. (1984). Interaktionsmuster und -routinen im Mathematikunterricht: Theoretische Grundlagen u. mikroethnographische Falluntersuchungen (Behaviour patterns and –routines in mathematics education. Theoretical basics and microethnoraphic analysis). Weinheim: Beltz.

    Google Scholar 

  • Zieffler, A., & Catalysts. (2013). Statistical thinking. A simulation approach to uncertainty. Minneapolis, MN: Catalyst Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Podworny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Podworny, S. (2018). Students’ Reflections About a Course for Learning Inferential Reasoning Via Simulations. In: Batanero, C., Chernoff, E. (eds) Teaching and Learning Stochastics. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-319-72871-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72871-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72870-4

  • Online ISBN: 978-3-319-72871-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics