Abstract
This chapter discusses the development of a one semester course for preservice teachers at the university level based on intensive use of simulation software. The course is designed to deepen the understanding of inference. Some design ideas for the course are presented. One major aspect of students’ work was to reflect in written form on their own statistical learning process for each of the five topics. An analysis of these reflections shows that the statistical learning process is closely related with the practiced handling of the software. Many positive statements in the reflections show where the design of the course worked well and which aspects have been understood by students. Statements concerning difficulties identify aspects for a future redesign of the course.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Batanero, C., Biehler, R., Maxara, C., Engel, J., & Vogel, M. (2005, June). Using simulation to bridge teachers content and pedagogical knowledge in probability. Paper presented at the 15th ICMI Study Conference: The Professional Education and Development of Teachers of Mathematics. Aguas de Lindoia, Brazil: ICMI.
Cobb, G. (2007). The introductory statistics course: A ptolemaic curriculum? Technology Innovations in Statistics Education, 1(1), 1–15.
Cobb, P., Confrey, J., deSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.
Doerr, H. M., & Pratt, D. (2008). The learning of mathematics and mathematical modeling. In M. K. Heid & G. W. Blume (Eds.), Research on technology and the teaching and learning of mathematics: Research syntheses (pp. 259–285). Charlotte: Information Age Publishing.
Drijvers, P. (2012). Teachers transforming resources into orchestrations. In G. Gueudet, B. Pepin & L. Trouche (Eds.), From text to ‘lived’ resources (pp. 265–281). Dordrecht, The Netherlands: Springer.
Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in mathematics, 75(2), 213–234.
Engel, J. (2007. August). On teaching the bootstrap. Paper presented at the International Statistical Institute 56th Session, Lisbon: International Statistical Institute. https://iase-web.org/documents/papers/isi56/IPM40_Engel.pdf. Accessed 1 July, 2017.
Garfield, J., & Ben-Zvi, D. (2008). Developing students’ statistical reasoning. New York: Springer.
Garfield, J., delMas, J., & Zieffler, A. (2012). Developing statistical modelers and thinkers in an introductory, tertiary-level statistics course. ZDM Mathematics Education 44(7), 883–898.
GDM, Working Group of Stochastics (2003). Empfehlung zu Zielen und zur Gestaltung des Stochastikunterrichts (Recommendations for goals and configuration of statistics lessons). Stochastik in der Schule, 23(3), 21–26.
Konold, C., Harradine, A. & Kazak, S. (2007). Understanding distributions by modeling them. International Journal of Computers for Mathematical Learning 12(3), 217–230.
Konold, C., & Kazak, S. (2008). Reconnecting data and chance. Technology Innovations in Statistics Education 2(1). http://escholarship.org/uc/item/38p7c94v. Accessed: 30 June 2017.
Konold, C., & Miller, C. (2011). TinkerPlots TM Version 2. Emeryville, CA: KCP.
Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modelling perspective on mathematics teaching, learning and problem solving. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism. models and modelling perspectives on mathematics problem solving, learning, and teaching (pp. 3–33). Mahwah: Lawrence Erlbaum.
Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In R. Lesh, & A. Kelly (Eds.), Handbook of research design in mathematics and science education (pp. 591–645). Mahwah: Lawrence Erlbaum.
Maxara, C. & Biehler, R. (2006). Students’ probabilistic simulation and modeling competence after a computer-intensive elementary course in statistics and probability. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. Salvador de Bahia (Brazil); International Statistical Institute. https://www.stat.auckland.ac.nz/~iase/publications/17/7C1_MAXA.pdf. Accessed 1 July, 2017.
Mayring, P. (2015). Qualitative content analysis: Theoretical background and procedures. In A.Bikner-Ahsbahs, C Knipping,. & N. Presmeg, (Eds.), Approaches to qualitative research in mathematics education (pp. 365–380). Dordrecht, The Netherlands: Springer.
Noll, J. & Kirin, D. (2016). Student approaches to constructing statistical models using TinkerPlots. Technology Innovations in Statistics Education 9(1). http://escholarship.org/uc/item/05b643r9. Accessed: 30 June 2017.
Pfannkuch, M. (2011). The role of context in developing informal statistical inferential reasoning: A classroom study. Mathematical Thinking and Learning 13(1–2), 27–46. doi: https://doi.org/10.1080/10986065.2011.538302.
Podworny, S. & Biehler, R. (2014). A learning trajectory on hypothesis testing with TinkerPlots - design and exploratory evaluation. In K. Makar; B. de Sousa; R. Gould (Eds.), Proceedings of the Ninth International Conference on Teaching Statistics Flagstaff, AR: International Statistical Institute. http://iase-web.org/icots/9/proceedings/pdfs/ICOTS9_9A2_PODWORNY.pdf. Accessed: 30 June 2017.
Pratt, D., & Ainley, J. (2014). Chance re-encounters: ‘Computers in probability education’ revisited. In T. Wassong, D. Frischemeier, P. R. Fischer, R. Hochmuth, & P. Bender (Eds.), Mit Werkzeugen Mathematik und Stochastik lernen. Using tools for mathematics and statistics (pp. 165–177). Wiesbaden: Springer.
Rabardel, P. (2002). People and technology. Occasional paper. Université Paris 8. https://hal.archives-ouvertes.fr/hal-01020705. Accessed: 30 June 2017.
Stratmann, J., Preußler, A., & Kerres, U. (2009). Lernerfolg und Kompetenz: Didaktische Potentiale von „Portfolios“ im Hochschulstudium (Learning success and competency: Didactical potential of “portfolios” in universities). Zeitschrift für Hochschulentwicklung 4(1), 90–103.
Voigt, J. (1984). Interaktionsmuster und -routinen im Mathematikunterricht: Theoretische Grundlagen u. mikroethnographische Falluntersuchungen (Behaviour patterns and –routines in mathematics education. Theoretical basics and microethnoraphic analysis). Weinheim: Beltz.
Zieffler, A., & Catalysts. (2013). Statistical thinking. A simulation approach to uncertainty. Minneapolis, MN: Catalyst Press.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Podworny, S. (2018). Students’ Reflections About a Course for Learning Inferential Reasoning Via Simulations. In: Batanero, C., Chernoff, E. (eds) Teaching and Learning Stochastics. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-319-72871-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-72871-1_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72870-4
Online ISBN: 978-3-319-72871-1
eBook Packages: EducationEducation (R0)