Advertisement

Offshore Winds

  • Stefan Emeis
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter deals with the marine atmospheric boundary (MABL). The special features of wind and turbulence profiles over the sea are very important, since an increasingly larger fraction of wind energy will be generated at offshore wind parks in the future. Although the sea surface is perfectly flat, these wind features partly differ from profiles over homogeneous land presented in Chap.  3.

References

  1. Abild, J., B. Nielsen: Extreme values of wind speeds in Denmark. Risoe-M-2842, 106 pp. (1991)Google Scholar
  2. Anderson, R.: A study of wind stress and heat flux over the open ocean by the inertial-dissipation method. J. Phys. Oceanogr. 23, 2153–2161 (1993)Google Scholar
  3. Andreas, E.L., L. Mahrt, D. Vickers: A New Drag Relation for Aerodynamically Rough Flow over the Ocean. J. Atmos. Sci., 69, 2520–2537 (2012)Google Scholar
  4. Atkinson B.W.: Meso-scale Atmospheric Circulations. Academic Press, London etc., 495 pp. (1981)Google Scholar
  5. Barthelmie, R.J., A.M. Sempreviva, S.C. Pryor: The influence of humidity fluxes on offshore wind speed profiles. Ann. Geophys. 28, 1043–1052 (2010)Google Scholar
  6. Barthelmie R.J.: Monitoring Offshore Wind and Turbulence Characteristics in Denmark, Proceedings of the BWEA Wind Energy Conference (1999)Google Scholar
  7. Bilstein, M., S. Emeis: The Annual Variation of Vertical Profiles of Weibull Parameters and their Applicability for Wind Energy Potential Estimation. DEWI Mag. 36, 44–50 (2010)Google Scholar
  8. Black, P., and Coauthors: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc. 88, 357–374 (2007)Google Scholar
  9. Brooks, I., D. Rogers: Aircraft observations of the mean and turbulent structure of a shallow boundary layer over the Persian Gulf. Bound.-Lay. Meteorol. 95, 189–210 (2000)Google Scholar
  10. Bye, J.A.T., Wolff, J.-O.: Charnock dynamics: a model for the velocity structure in the wave boundary layer of the air–sea interface. Ocean Dyn. 58, 31–42 (2008)Google Scholar
  11. Bye, J.A., J.-O. Wolff, K.A. Lettmann: On the variability of the Charnock constant and the functional dependence of the drag coefficient on wind speed: Part II-Observations. Ocean Dyn., 64, 969–974 (2014)Google Scholar
  12. Charnock, H.: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc. 81, 639–640 (1955)Google Scholar
  13. Coelingh, J., van Wijk, A., Holtslag, A.: Analysis of wind speed observations over the North Sea. J. Wind Eng. Ind. Aerodyn. 61, 51–69 (1996)Google Scholar
  14. Cook, N.J.: Towards better estimation of extreme winds, J. Wind Eng. Ind. Aerodyn. 9, 295–323 (1982)Google Scholar
  15. Davidson, K. L.: Observational Results on the Influence of Stability and Wind-Wave Coupling on Momentum Transfer Fluctuations over Ocean Waves. Bound.-Lay. Meteorol. 6, 305–331 (1974)Google Scholar
  16. Donelan, M. A.: Air–sea interaction. The Sea. Ocean Eng. Sci. 9, 239–292 (1990)Google Scholar
  17. Donelan, M.A., B. Haus, N. Reul, W. Plant, M. Stiassnie, H. Graber, O. Brown, E. Saltzman: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 31, L18306,  https://doi.org/10.1029/2004gl019460 (2004)
  18. Dörenkämper, M., M. Optis, A. Monahan, G. Steinfeld: On the Offshore Advection of Boundary-Layer Structures and the Influence on Offshore Wind Conditions. Bound.-Lay. Meteorol., 155, 459–482 (2015)Google Scholar
  19. Edson, J.B., C.J. Zappa, J.A. Ware, W.R. McGillis, J.E. Hare: Scalar flux profile relationships over the open ocean. J. Geophys. Res. 109, C08S09,  https://doi.org/10.1029/2003jc001960 (2004)
  20. Emeis, S., M. Türk: Wind-driven wave heights in the German Bight. Ocean Dyn. 59, 463–475. (2009)Google Scholar
  21. Emeis, S.: Vertical variation of frequency distributions of wind speed in and above the surface layer observed by sodar. Meteorol. Z. 10, 141–149 (2001)Google Scholar
  22. Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, G. S. Young: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res. 101, 3747–3764 (1996)Google Scholar
  23. Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, J. B. Edson: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571–591 (2003)Google Scholar
  24. Foreman, R., S. Emeis: Revisiting the Definition of the Drag Coefficient in the Marine Atmospheric Boundary Layer. J. Phys. Oceanogr. 40, 2325–2332 (2010)Google Scholar
  25. Foreman, R. J., B. Cañadillas, T. Neumann, S. Emeis: Measurements of heat and humidity fluxes in the wake of offshore wind turbines. J. Renew. Sustain. Energy. 9 (5), 053304 (2017)Google Scholar
  26. Garratt, J.R.: Review of Drag Coefficients over Oceans and Continents, Mon. Wea. Rev. 105, 915–929 (1977)Google Scholar
  27. Garratt, J.R.: The stably stratified internal boundary layer for steady and diurnally varying offshore flow. Bound.-Lay. Meteorol. 38, 369–394 (1987)Google Scholar
  28. Geernaert, G.: Bulk parameterizations for the wind stress and heat fluxes. Surface Waves and Fluxes, KluwerAcademic, 91–172 (1990)Google Scholar
  29. Hart, N. C., Gray, S. L., Clark, P. A.: Sting-jet windstorms over the North Atlantic: Climatology and contribution to extreme wind risk. J. Clim., 30, 5455–5471 (2017)Google Scholar
  30. Hedde, T., Durand, P.: Turbulence Intensities and Bulk Coefficients in the Surface Layer above the Sea. Bound.-Lay. Meteorol. 71, 415–432 (1994)Google Scholar
  31. Hersbach, H., Janssen, P.A.E.M.: Improvement of the short-fetch behavior in the wave ocean model (WAM). J. Atmos. Ocean Technol. 16, 884–892 (1999)Google Scholar
  32. Hsu, S.: A dynamic roughness equation and its application to wind stress determination at the airsea interface. J. Phys. Oceanogr. 4, 116–120 (1974)Google Scholar
  33. Janssen, J.A.M.: Does the wind stress depend on sea-state or not? A statistical error analysis of HEXMAX data. Bound.-Lay. Meteor. 83, 479–503 (1997)Google Scholar
  34. Jensen, N.O., L. Kristensen: Gust statistics for the Great Belt Region. Risoe-M-2828, 21 pp. (1989)Google Scholar
  35. Kumar, V.S., Deo, M.C., Anand, N.M., Chandramohan, P.: Estimation of wave directional spreading in shallow water. Ocean Eng. 26, 23–98 (1999)Google Scholar
  36. Large, W.G., Pond, S.: Open Ocean Momentum Flux Measurements in Moderate to Strong Winds. J. Phys. Ocean. 11, 324–336 (1981)Google Scholar
  37. Larsén, X.G., S.E. Larsen, E.L. Petersen: Full-Scale Spectrum of Boundary-Layer Winds. Bound.-Lay. Meteorol., 159, 349–371 (2016)Google Scholar
  38. Maat, N., C. Kraan, W. Oost: The roughness of wind waves. Bound.-Layer Meteor. 54, 89–103 (1991)Google Scholar
  39. Mulhearn, P.: On the formation of a stably stratified internal boundary layer by advection of warm air over a colder sea. Bound.-Lay. Meteorol. 21, 247–254 (1981)Google Scholar
  40. Neumann, G.: On ocean wave spectra and a new method of forecasting wind-generated sea. Beach Erosion Board, Washington. Tech. Mem. no. 43 (Dec) (1953)Google Scholar
  41. Oost, W.A., C.M.J. Jacobs, C. van Oort: Stability effects on heat and moisture fluxes at sea. Bound.-Lay. Meteorol. 95, 271–302 (2000)Google Scholar
  42. Oost, W.A., Komen, G.J., Jacobs, C.M.J., Van Oort, C.: New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound.-Lay. Meteorol. 103, 409–438 (2002)Google Scholar
  43. Palutikof, J.P., B.B. Brabson, D.H. Lister, S.T. Adcock: A review of methods to calculate extreme wind speeds. Meteorological Applications, 6, 119–132 (1999)Google Scholar
  44. Rogers, D.P., D.W. Johnson, C.A. Friehe: The Stable Internal Boundary Layer over a Coastal Sea. Part I: Airborne Measurements of the Mean and Turbulent Structure. J. Atmos. Sci. 52, 667–683 (1995)Google Scholar
  45. Roll, H.U.: Über Größenunterschiede der Meereswellen bei Warm-und Kaltluft. Dtsch Hydrogr. Z. 5, 111–114. (1952)Google Scholar
  46. Schultz, D. M.: Reexamining the cold conveyor belt. Mon. Wea. Rev., 129, 2205–2225 (2001)Google Scholar
  47. Sempreviva, A.M., S.-E. Gryning: Humidity fluctuations in the marine boundary layer measured at a coastal site with an infrared humidity sensor. Bound.-Lay. Meteorol. 77, 331–352 (1996)Google Scholar
  48. Simpson, J.E.: Sea breeze and local wind. Cambridge University Press, Cambridge (UK), 239 pp. (1994)Google Scholar
  49. Sjöblom, A., Smedman, A.-S.: Vertical structure in the marine atmospheric boundary layer and its implication for the internal dissipation method. Bound.-Lay. Meteorol. 109, 1–25 (2003)Google Scholar
  50. Smedman, A.-S., H. Bergström, U. Högström: Spectra, Variances and Length Scales in a Marine Stable Boundary Layer Dominated by a Low Level Jet. Bound.- Lay. Meteorol. 76, 211–232 (1995)Google Scholar
  51. Smedman A.S., Högström U., Bergström H.: Low level jets—a decisive factor for off-shore wind energy siting in the Baltic Sea. Wind Eng. 20, 137–147 (1996)Google Scholar
  52. Smith, S., and Coauthors: Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteor. 60, 109–142 (1992)Google Scholar
  53. Smith, S.D.: Wind Stress and Heat Flux over the Ocean in Gale Force Winds. J. Phys. Ocean. 10, 709–726 (1980)Google Scholar
  54. Sullivan, P., J. McWilliams: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 42, 19–42 (2010)Google Scholar
  55. Sverdrup, H.U., Munk, W.H.: Wind, sea and swell: Theory of relations for forecasting. Hydrogr. Off. Publ., No. 601 (1947)Google Scholar
  56. Toba, Y.: Stochastic form of the growth of wind waves in a single parameter representation with physical implications. J. Phys. Oceanogr. 8, 494–507 (1978)Google Scholar
  57. Türk, M., S. Emeis: The dependence of offshore turbulence intensity on wind speed. J. Wind Eng. Ind. Aerodyn. 98, 466–471 (2010)Google Scholar
  58. Türk, M.: Ermittlung designrelevanter Belastungsparameter für Offshore-Windkraftanlagen. PhD thesis University of Cologne (2008) (Available from: http://kups.ub.uni-koeln.de/2799/)
  59. van der Hoven, I.: Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J. Meteorol., 14, 160–164 (1957)Google Scholar
  60. Vickers, D., Mahrt, L.: Fetch limited Dr ag Coefficients. Bound.-Lay. Meteorol. 85, 53–79 (1997)Google Scholar
  61. Wu, J.: Wind-Stress Coefficients over Sea Surface near Neutral Conditions—A Revisit. J. Phys. Oceanogr. 10, 727–740 (1980)Google Scholar
  62. Yelland, M.J., B. Moat, P. Taylor, R. Pascal, J. Hutchings, V. Cornell: Wind stress measurements from the open ocean corrected for airflow distortion by the ship. J. Phys. Oceanogr. 28, 1511–1526 (1998)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Meteorologie und KlimaforschungKarlsruher Institut für TechnologieGarmisch-PartenkirchenGermany

Personalised recommendations