Skip to main content

Probabilistic Caching in Wireless Device to Device Networks with Contention Based Multimedia Delivery

  • Conference paper
  • First Online:
Book cover 5G for Future Wireless Networks (5GWN 2017)

Abstract

This paper studies the optimal probabilistic caching placement in large-scale cache-enabled D2D networks to maximize the cache hit performance, which is defined as the probability that a random user request can be served by mobile helpers (MHs) in the vicinity. To avoid collisions of the concurrent transmissions, a contention based multimedia delivery protocol is proposed, under which a MH is allowed to transmit only if its back-off timer is the smallest among its associated contenders. By applying tools from stochastic geometry, the optimal caching probability is derived and analyzed. It is shown that the optimal solution of the probabilistic caching placement depends on the density of MHs, the D2D communication range, and the user request distribution. With the derived optimal caching probabilities, we further characterize the transmission probability of MHs and thereby the successful content delivery probability of the cache-enabled D2D network. Simulations are provided to validate our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For two eligible MHs located at x and y, we say y is a contender of x with contention threshold \( N_{d} \,{\text{if}}\,P_{d} h|{\mathbf{y}} - {\mathbf{x}}|^{ - \alpha } \ge N_{d} . \)

  2. 2.

    A point process \( \mathcal{N} \) is isotropic if its characteristics are invariant under rotation [24].

References

  1. Cisco: Cisco visual networking index: global mobile data traffic forecast update, 2015–2020, Whitepaper, June 2016

    Google Scholar 

  2. Liu, H., Chen, Z., Tian, X., Wang, X., Tao, M.: On content-centric wireless delivery networks. IEEE Wirel. Commun. 21(6), 118–125 (2014)

    Article  Google Scholar 

  3. Liu, H., Chen, Z., Qian, L.: The three primary colors of mobile systems. arXiv preprint arXiv:1603.03551 (2016)

  4. Zhao, Z., Peng, M., Ding, Z., Wang, W., Poor, H.V.: Cluster content caching: an energy-efficient approach to improve quality of service in cloud radio access networks. IEEE J. Sel. Areas Commun. 34(5), 1 (2016)

    Article  Google Scholar 

  5. Ji, M., Caire, G., Molisch, A.F.: Wireless device-to-device caching networks: basic principles and system performance. IEEE J. Sel. Areas Commun. 34(1), 176–189 (2016)

    Article  Google Scholar 

  6. Sheng, M., Xu, C., Liu, J., Song, J.: Enhancement for content delivery with proximity communications in caching enabled wireless networks: architecture and challenges. IEEE Commun. Mag. 54(8), 70–76 (2016)

    Article  Google Scholar 

  7. Bai, B., Wang, L., Han, Z., Chen, W., Svensson, T.: Caching based socially-aware D2D communications in wireless content delivery networks: a hypergraph framework. IEEE Wirel. Commun. 23(4), 74–81 (2016)

    Article  Google Scholar 

  8. Liu, D., Chen, B., Yang, C., Molisch, A.F.: Caching at the wireless edge: design aspects, challenges, and future directions. IEEE Commun. Mag. 54(9), 22–28 (2016)

    Article  Google Scholar 

  9. Golrezaei, N., Molisch, A.F., Dimakis, A.G., Caire, G.: Femtocaching and device-to-device collaboration: a new architecture for wireless video distribution. IEEE Commun. Mag. 51(4), 142–149 (2013)

    Article  Google Scholar 

  10. Ji, M., Caire, G., Molisch, A.F.: The throughput-outage tradeoff of wireless one-hop caching networks. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 1461–1465. IEEE (2013)

    Google Scholar 

  11. Ji, M., Caire, G., Molisch, A.F.: Fundamental limits of caching in wireless D2D networks. IEEE Trans. Inf. Theory 62(2), 849–869 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chedia, J., Giovanidis, A.: The effects of mobility on the hit performance of cached D2D networks. Spatial Stochastic Models for Wireless Networks (2016)

    Google Scholar 

  13. Derya, M., Al-Shalash, M., Andrews, J.G.: Optimizing the spatial content caching distribution for device-to-device communications. In: IEEE International Symposium on Information Theory (2016)

    Google Scholar 

  14. Derya, M., Al-Shalash, M., Andrews, J.G.: Spatially correlated content caching for device-to-device communications. arXiv preprint arXiv:1609.00419 (2016)

  15. Afshang, M., Dhillon, H.S., Chong, P.H.J.: Fundamentals of cluster-centric content placement in cache-enabled device-to-device networks. IEEE Trans. Commun. 64(6), 2511–2526 (2015)

    Article  Google Scholar 

  16. Chen, Z., Kountouris, M.: D2D caching vs. small cell caching: where to cache content in a wireless network? In: IEEE International Workshop on Signal Processing Advances in Wireless Communications (2016)

    Google Scholar 

  17. Chen, Z., Pappas, N., Kountouris, M.: Probabilistic caching in Wireless D2D Networks: Cache Hit Optimal vs. Throughput Optimal. arXiv preprint arXiv:1611.03016 (2016)

  18. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  19. Haenggi, M., Ganti, R.K.: Interference in Large Wireless Networks. Foundations and Trends in Networking. NOW, Hanover (2009)

    MATH  Google Scholar 

  20. Lee, C., Haenggi, M.: Interference and outage in Poisson cognitive networks. IEEE Trans. Wirel. Commun. 11(4), 1392–1401 (2012)

    Article  Google Scholar 

  21. Song, X., Yin, C., Liu, D., Zhang, R.: Spatial throughput characterization in cognitive radio networks with threshold-based opportunistic spectrum access. IEEEJ. Sel. Areas Commun. 32(11), 2190–2204 (2014)

    Article  Google Scholar 

  22. Nguyen, T., Baccelli, F.: A probabilistic model of carrier sensing based cognitive radio. In: Proceedings of IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, Singapore, April 2010

    Google Scholar 

  23. Kingman, J.F.C.: Poisson Processes. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  24. Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, New York (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Fundamental Research Funds for the Central Universities under Grant No. N150403001, the National Natural Science Foundation of China under Grant 61671141, U14331156, 1151002, 61401079, 61501038, and the Major Research Plan of the National Natural Science Foundation of China under Grant 91438117,91538202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshi Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, X., Geng, Y., Meng, X., Ye, N., Liu, J., Lei, W. (2018). Probabilistic Caching in Wireless Device to Device Networks with Contention Based Multimedia Delivery. In: Long, K., Leung, V., Zhang, H., Feng, Z., Li, Y., Zhang, Z. (eds) 5G for Future Wireless Networks. 5GWN 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-72823-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72823-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72822-3

  • Online ISBN: 978-3-319-72823-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics