Skip to main content

Non-human C. difficile Reservoirs and Sources: Animals, Food, Environment

  • Chapter
  • First Online:
Book cover Updates on Clostridium difficile in Europe

Abstract

Clostridium difficile is ubiquitous and is found in humans, animals and in variety of environments. The substantial overlap of ribotypes between all three main reservoirs suggests the extensive transmissions. Here we give the overview of European studies investigating farm, companion and wild animals, food and environments including water, soil, sediment, waste water treatment plants, biogas plants, air and households. Studies in Europe are more numerous especially in last couple of years, but are still fragmented in terms of countries, animal species or type of environment covered. Soil seem to be the habitat of divergent unusual lineages of C. difficile. But the most important aspect of animals and environment is their role in C. difficile transmissions and their potential as a source for human infection is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Saif N, Brazier JS (1996) The distribution of Clostridium difficile in the environment of South Wales. J Med Microbiol 45:133–137

    Article  PubMed  Google Scholar 

  • Al-Saif NM, O’Neill GL, Magee JT et al (1998) PCR-ribotyping and pyrolysis mass spectrometry fingerprinting of environmental and hospital isolates of Clostridium difficile. J Med Microbiol 47:117–1121

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Perez S, Blanco JL, Bouza E et al (2009) Prevalence of Clostridium difficile in diarrhoeic and non-diarrhoeic piglets. Vet Microbiol 137:302–305

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Perez S, Blanco JL, Pelaez T et al (2013) High prevalence of the epidemic Clostridium difficile PCR ribotype 078 in Iberian free-range pigs. Res Vet Sci 95:358–361

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Perez S, Blanco JL, Martinez-Nevado E et al (2014) Shedding of Clostridium difficile PCR-ribotype 078 by zoo animals, and report of an unstable metronidazole-resistant isolate from a zebra foal (Equus quagga burchellii). Vet Microbiol 169:218–222

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Pérez S, Blanco JL, Peláez T et al (2015) Faecal shedding of antimicrobial-resistant Clostridium difficile strains by dogs. J Small Anim Pract 56:190–195

    Article  PubMed  Google Scholar 

  • Álvarez-Pérez S, Blanco JL, Harmanus C et al (2017) Prevalence and characteristics of Clostridium perfringens and Clostridium difficile in dogs and cats attended in diverse veterinary clinics from the Madrid region. Anaerobe 48:47–55

    Article  PubMed  Google Scholar 

  • Andres-Lasheras S, Bolea R, Mainar-Jaime RC et al (2017) Presence of Clostridium difficile in pig faecal samples and wild animal species associated with pig farms. J Appl Microbiol 122:462–472

    Article  CAS  PubMed  Google Scholar 

  • Avbersek J, Janezic S, Pate M et al (2009) Diversity of Clostridium difficile in pigs and other animals in Slovenia. Anaerobe 15:252–255

    Article  CAS  PubMed  Google Scholar 

  • Avbersek J, Pirs T, Pate M et al (2014) Clostridium difficile in goats and sheep in Slovenia: characterisation of strains and evidence of age-related shedding. Anaerobe 15:252–255

    Article  Google Scholar 

  • Bandelj P, Trilar T, Raenik J et al (2011) Zero prevalence of Clostridium difficile in wild passerine birds in Europe. FEMS Microbiol Lett 321:183–185

    Article  CAS  PubMed  Google Scholar 

  • Bandelj P, Trilar T, Blagus R et al (2014) Prevalence and molecular characterization of Clostridium difficile isolated from European Barn Swallows (Hirundo rustica) during migration. BMC Vet Res 10:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandelj P, Blagus R, Briski F et al (2016) Identification of risk factors influencing Clostridium difficile prevalence in middle-size dairy farms. Vet Res 47:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandelj P, Golob M, Ocepek M et al (2017) Antimicrobial susceptibility patterns of Clostridium difficile isolates from family dairy farms. Zoonoses Public Health 64:213–221

    Article  CAS  PubMed  Google Scholar 

  • Bauer MP, Kuijper EJ (2015) Potential sources of Clostridium difficile in human infection. Infect Dis Clin N Am 29:29–35

    Article  Google Scholar 

  • Bauer MP, Notermans DW, van Benthem BH et al (2011) Clostridium difficile infection in Europe: a hospital based survey. Lancet 377:63–73

    Article  PubMed  Google Scholar 

  • Baverud V, Gustafsson A, Franklin A et al (2003) Clostridium difficile: prevalence in horses and environment, and antimicrobial susceptibility. Equine Vet J 35:465–471

    Article  CAS  PubMed  Google Scholar 

  • Baverud V, Gustafsson A, Franklin A et al (2004) Clostridium difficile diarrhea: infection control in horses. Vet Clin North Am Equine Pract 20:615–630

    Article  PubMed  Google Scholar 

  • Bojesen AM, Olsen KE, Bectelsen MF (2006) Fatal enterocolitis in Asian elephants (Elephas maximus) caused by Clostridium difficile. Vet Microbiol 116:329–335

    Article  PubMed  Google Scholar 

  • Borriello SP, Honour P, Turner T et al (1983) Household pets as a potential reservoir for Clostridium difficile infection. J Clin Pathol 36:84–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouttier S, Barc MC, Felix B et al (2010) Clostridium difficile in ground meat, France. Emerg Infect Dis 16:733–735

    Article  PubMed  PubMed Central  Google Scholar 

  • Burt SA, Siemeling L, Kuijper EJ et al (2012) Vermin on pig farms are vectors of Clostridium difficile PCR-ribotypes 078 and 045. Vet Microbiol 160:256–258

    Article  CAS  PubMed  Google Scholar 

  • Cooper KK, Songer JG, Uzal FA (2013) Diagnosing clostridial enteric disease in poultry. J Vet Diagn Investig 25:314–327

    Article  Google Scholar 

  • Dabard J, Dubos F, Martinet L et al (1979) Experimental reproduction of neonatal diarrhea in young gnotobiotic hares simultaneously associated with Clostridium difficile and other Clostridium strains. Infect Immun 24:7–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Boer E, Zwartkruis-Nahuis A, Heuvelink A et al (2009) Clostridium difficile PCR-ribotype 078 toxinotype V found in diarrhoeal pigs indentical to isolates from affected humans. Environ Microbiol 144:561–511

    Google Scholar 

  • Diab SS, Songer G, Uzal FA (2013) Clostridium difficile infection in horses: a review. Vet Microbiol 167:42–49

    Article  CAS  PubMed  Google Scholar 

  • Drigo I, Mazzolini E, Bacchin C et al (2015) Molecular characterization and antimicrobial susceptibility of Clostridium difficile isolated from rabbits raised for meat production. Vet Microbiol 181:303–307

    Article  CAS  PubMed  Google Scholar 

  • Eckert C, Burghoffer B, Barbut F et al (2013) Contamination of ready to eat raw vegetables with Clostridium difficile in France. J Med Microbiol 62:1435–1438

    Article  CAS  PubMed  Google Scholar 

  • Froschle B, Messelhäusser U, Höller C et al (2015) Fate of Clostridium botulinum and incidence of pathogenic clostridia in biogas processes. J Appl Microbiol 119:936–947

    Article  CAS  PubMed  Google Scholar 

  • Gould LH, Limbago B (2010) Clostridium difficile in food domestic animals: a new foodborne pathogen? Clin Infect Dis 51:577–582

    Article  PubMed  Google Scholar 

  • Hafiz S (1974) Clostridium difficile and its toxins. PhD thesis, Department of Microbiology, University of Leeds, UK

    Google Scholar 

  • Hammitt MC, Bueschel DM, Keel MK et al (2008) A possible role for Clostridium difficile in the etiology of calf enteritis. Vet Microbiol 127:343–352

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves KR, Colvin HV, Patel KV et al (2013) Genetically diverse Clostridium difficile strains harboring abundant prophages in an estuarine environment. Appl Environ Microbiol 79:6236–6243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensgens MP, Keessen EC, Squire MM et al (2012) Clostridium difficile infection in the community: a zoonotic disease? Clin Microbiol Infect 18:635–645

    Article  CAS  PubMed  Google Scholar 

  • Hoffer E, Haechler H, Frei R et al (2010) Low occurrence of Clostridium difficile in faecal samples of healthy calves and pigs at slaughter and in minced meat in Switzerland. J Food Prot 73:973–975

    Article  CAS  PubMed  Google Scholar 

  • Hopman NEM, Oorburg D, Sanders I et al (2011) High occurrence of various Clostridium difficile PCR-ribotypes in pigs arriving at the slaughterhouse. Vet Q 31:179–181

    Article  CAS  PubMed  Google Scholar 

  • Hunter D, Bellhouse R, Baker K (1981) Clostridium difficile isolated from a goat. Vet Rec 109:291–292

    Article  CAS  PubMed  Google Scholar 

  • Indra A, Lassing H, Baliko N et al (2009) Clostridium difficile: a new zoonotic agent? Wein Klin Wochensr 121:91–95

    Article  Google Scholar 

  • Janezic S, Ocepek M, Zidaric V et al (2012) Clostridium difficile genotypes other than ribotype 078 that are prevalent among human, animal and environmental isolates. BMC Microbiol 12:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janezic S, Potocnik M, Zidaric V et al (2016) Highly civergent Clostridium difficile strains isolated from the environment. PLoS One 11:e0167101

    Article  PubMed  PubMed Central  Google Scholar 

  • Jobstl M, Heuberger S, Indra A et al (2010) Clostridium difficile in raw products of animal origin. Int J Food Microbiol 138:172–175

    Article  CAS  PubMed  Google Scholar 

  • Jones MA, Hunter D (1983) Isolation of Clostridium difficile from pigs. Vet Rec 112:253

    Article  CAS  PubMed  Google Scholar 

  • Keessen EC, Donswijk CJ, Hol SP et al (2011a) Aerial dissemination of Clostridium difficile on a pig farm and its environment. Environ Res 111:1027–1032

    Article  CAS  PubMed  Google Scholar 

  • Keessen EC, van den Berkt AJ, Haasjes NH et al (2011b) The relation between farm specific factors and prevalence of C. difficile in slaughter pigs. Vet Microbiol 154:130–134

    Article  CAS  PubMed  Google Scholar 

  • Keessen EC, Hensgens MP, Spigaglia P et al (2013) Antimicrobial susceptibility profiles of human and piglet Clostridium difficile PCR-ribotype 078. Antimicrob Resist Infect Control 2:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiss D, Bilkei G (2005) A new periparturient disease in Eastern Europe, Clostridium difficile causes postparturient sow losses. Theriongenology 63:17–23

    Article  CAS  Google Scholar 

  • Knetsch CW, Connor TR, Mutreja A et al (2014) Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro Surveillance: Bulletin Europeen sur les maladies transmissibles = Eur Commun Dis Bull 19:20954

    Article  CAS  Google Scholar 

  • Knight DR, Squire MM, Collins DA et al (2016) Genome analysis of Clostridium difficile PCR ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission. Front Microbiol 7:2138

    PubMed  Google Scholar 

  • Koene MGJ, Mevius D, Wagenaar JA et al (2012) Clostridium difficile in Dutch animals: their presence, characteristics and similarities with human isolates. Clin Microbiol Infect 18:778–784

    Article  CAS  PubMed  Google Scholar 

  • Kotila SM, Pitkänen T, Brazier J et al (2013) Clostridium difficile contamination of public tap water distribution system during a waterborne outbreak in Finland. Scand J Public Health 41:541–545

    Article  PubMed  Google Scholar 

  • Lysons RJ, Hall GA, Lemcke RM et al (1980) Studies of organisms possibly implicated in swine dysentery. In: Proceedings of the 6th international Pig Veterinary Society

    Google Scholar 

  • McElroy MC, Hill M, Moloney G et al (2016) Typhlocolitis associated with C. difficile PCR-ribotypes 078 and 110 in neonatal piglets from a commercial Irish pig herd. Ir Vet J 69:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Noren T, Johansson K, Unemo M (2014) Clostridium difficile PCR-ribotype 046 is common among neonatal pigs and humans in Sweden. Clin Microbiol Infect 20:O2–O6

    Article  CAS  PubMed  Google Scholar 

  • Orden C, Blanco JL, Álvarez-Pérez S et al (2017a) Isolation of Clostridium difficile from dogs with digestive disorders, including stable metronidazole-resistant strains. Anaerobe 43:78–81

    Article  PubMed  Google Scholar 

  • Orden C, Neila C, Blanco JL et al (2017b) Recreational sandboxes for children and dogs can be a source of epidemic ribotypes of Clostridium difficile. Zoonoses Public Health 7

    Google Scholar 

  • Ossiprandi MC, Buttrini M, Bottarelli E et al (2010) Preliminary molecular analysis of Clostridium difficile isolates from healthy horses in northern Italy. Comp Immunol Microbiol Infect Dis 33:e25–e29

    Article  PubMed  Google Scholar 

  • Otten AM, Reid-Smith RJ, Fazil A et al (2010) Disease transmission model for community-associated Clostridium difficile infection. Epidemiol Infect 138:907–914

    Article  CAS  PubMed  Google Scholar 

  • Pasquale V, Romano VJ, Rupnik M et al (2011) Isolation and characterization of Clostridium difficile from shellfish and marine environments. Folia Microbiol (Praha) 56:431–437

    Article  CAS  Google Scholar 

  • Pasquale V, Romano VJ, Rupnik M et al (2012) Occurrence of toxigenic Clostridium difficile in edible bivalve molluscs. Food Microbiol 31:309–312

    Article  CAS  PubMed  Google Scholar 

  • Pelaez T, Alcala L, Blanco JL et al (2013) Characterization of swine isolates of Clostridium difficile in Spain: a potential source of epidemic multidrug resistant strains? Anaerobe 22:45–49

    Article  PubMed  Google Scholar 

  • Perrin J, Buogo C, Gallusser A et al (1993) Intestinal carriage of Clostridium difficile in neonate dogs. Zentralbl Veterinarmed B 40:222–226

    CAS  PubMed  Google Scholar 

  • Pirs T, Ocepek M, Rupnik M (2008) Isolation of Clostridium difficile from food animals in Slovenia. J Med Microbiol 57:790–792

    Article  CAS  PubMed  Google Scholar 

  • Pirs T, Avbersek J, Zdouc I et al (2013) Antimicrobial susceptibility of animal and human isolates of C. difficile by broth microdilution. J Med Microbiol 62:1478–1485

    Article  CAS  PubMed  Google Scholar 

  • Rieu-Lesme F, Fonty G (1999) Isolation of Clostridium difficile from the ruminal reservoir of newborn lambs. Vet Rec 145:501

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Taminiau B, Van Broeck J et al (2012) Clostridium difficile in young farm animals and slaughter animals in Belgium. Anaerobe 18:621–625

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Avesani V, Van Broeck J et al (2013) Presence of Clostridium difficile in pigs and cattle intestinal contents and carcass contamination at slaughterhouse in Belgium. Int J Food Microbiol 166:256–262

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Taminiau B, Brévers B et al (2014a) Carriage and acquisition rates of Clostridium difficile in hospitalized horses, including molecular characterization, multilocus sequence typing and antimicrobial susceptibility of bacterial isolates. Vet Microbiol 172:309–317

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Taminiau B, Avesani V et al (2014b) Multilocus sequence typing analysis and antibiotic resistance of Clostridium difficile strains, including molecular characterization, multilocus sequence typing and antimicrobial susceptibility of bacterial isolates. Vet Microbiol 172:309–317

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Taminiau B, Brévers B et al (2015) Faecal microbiota characterisation of horses using 16 rdna barcoded pyrosequencing, and carriage rate of Clostridium difficile at hospital admission. BMC Microbiol 15:181

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez C, Taminiau B, Van Broeck J et al (2016) Clostridium difficile in food and animals: a comprehensive review. Adv Exp Med Biol 4:65–92

    Article  Google Scholar 

  • Rodriguez-Palacios A, Lejeune JT (2011) Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile. Appl Environ Microbiol 77:3085–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Palacios A, Borgmann S, Kline TR et al (2013) Clostridium difficile in foods and animals: history and measures to reduce exposure. Anim Health Res Rev 14:11–29

    Article  PubMed  Google Scholar 

  • Romanazzi V, Bonetta S, Fornasero S et al (2016) Assessing methanobrevibacter smithii and Clostridium difficile as not conventional faecal indicators in effluents of a wastewater treatment plant integrated with sludge anaerobic digestion. J Environ Manag 184:170–177

    Article  CAS  Google Scholar 

  • Romano V, Albanese F, Dumontet S et al (2012a) Prevalence and genotypic characterization of Clostridium difficile from ruminants in Switzerland. Zoonoses Public Health 59:545–548

    Article  CAS  PubMed  Google Scholar 

  • Romano V, Pasqualea V, Krovacekb K et al (2012b) Toxigenic Clostridium difficile PCR ribotypes from wastewater treatment plants in Southern Switzerland. Appl Environ Microbiol 78:6643–6646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupnik M (2007) Is Clostridium difficile-associated infection a potentially zoonotic and foodborne disease? Clin Microbiol Infect 13:457–459

    Article  CAS  PubMed  Google Scholar 

  • Rupnik M (2010) Clostridium difficile: (re)emergence of zoonotic potential. Clin Infect Dis 51:583–584

    Article  PubMed  Google Scholar 

  • Schmid A, Messelhausser U, Hormansdorfer S et al (2013) Occurrence of zoonotic Clostridia and Yersinia in healthy cattle. J Food Prot 76:1697–1703

    Article  CAS  PubMed  Google Scholar 

  • Schneeberg A, Rupnik M, Neubauer H et al (2012) Prevalence and distribution of Clostridium difficile PCR ribotypes in cats and dogs from animal shelters in Thuringia, Germany. Anaerobe 18:484–488

    Article  PubMed  Google Scholar 

  • Schneeberg A, Neubauer H, Schmoock G et al (2013a) Clostridium difficile genotypes in piglet populations in Germany. J Clin Microbiol 51:3796–3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneeberg A, Neubauer H, Schomoock G et al (2013b) Presence of Clostridium difficile PCR ribotype clusters related to 033, 078 and 045 in diarrhoeiccalves in Germany. J Med Microbiol 62:1190–1198. Congress 1980, Copenhagen, p 231

    Article  PubMed  Google Scholar 

  • Skraban J, Dzeroski S, Zenko B et al (2013) Changes of poultry faecal microbiota associated with Clostridium difficile colonisation. Vet Microbiol 165:416–424

    Article  PubMed  Google Scholar 

  • Songer JG (2000) Infection of neonatal swine with Clostridium difficile. J Swine Health Prod 4:185–189

    Google Scholar 

  • Spigaglia P, Drigo I, Barbanti F et al (2015) Antibiotic resistance patterns and PCR-ribotyping of Clostridium difficile strains isolated from swine and dogs in Italy. Anaerobe 31:42–46

    Article  CAS  PubMed  Google Scholar 

  • Squire MM, Riley TV (2013) Clostridium difficile infection in human and piglets: a “One health” opportunity. Curr Top Microbiol Immunol 365:299–314

    PubMed  Google Scholar 

  • Steyer A, Gutiérrez-Aguirre I, Rački N et al (2015) The detection rate of enteric viruses and Clostridium difficile in a waste water treatment plant effluent. Food Environ Virol 7:164–172

    Article  CAS  Google Scholar 

  • Von Abercon SMM, Karlsson F, Wigh GT et al (2009) Low occurrence of Clostridium difficile in retail ground meat in Sweden. J Food Prot 72:1732–1734

    Article  Google Scholar 

  • Warriner K, Xu C, Habash M et al (2016) Dissemination of Clostridium difficile in food and the environment: significant sources of C. difficile community acquired infection? J Appl Microbiol 122:542–553

    Article  PubMed  Google Scholar 

  • Weber A, Kroth P, Heil G (1989) The occurrence of Clostridium difficile in fecal samples of dogs and cats. Zentralbl Veterinarmed B 36:568–576

    CAS  PubMed  Google Scholar 

  • Weese JS (2010) Clostridium difficile in food – innocent bystander or serious threat? Clin Microbiol Infect 16:3–10

    Article  CAS  PubMed  Google Scholar 

  • Wetterwik KJ, Trowald-Wigh G, Fernström LL et al (2013) Clostridium difficile in faeces from healthy dogs and dogs with diarrhea. Acta Vet Scand 55:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Zidaric V, Zemljic M, Janezic S et al (2008) High diversity of Clostridium difficile genotypes isolated from a single poultry farm producing replacement laying hens. Anaerobe 14:325–327

    Article  CAS  PubMed  Google Scholar 

  • Zidaric V, Beigot S, Lapajne S et al (2010) The occurrence and high diversity of Clostridium difficile genotypes in rivers. Anaerobe 16(4):371–375

    Article  PubMed  Google Scholar 

  • Zidaric V, Pardon B, Dos Vultos T et al (2012) Different antibiotic resistance and sporulation properties within multiclonal Clostridium difficile PCR ribotypes 078, 126, and 033 in a single calf farm. Appl Environ Microbiol 78:8515–8522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Rodriguez Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodriguez Diaz, C., Seyboldt, C., Rupnik, M. (2018). Non-human C. difficile Reservoirs and Sources: Animals, Food, Environment. In: Mastrantonio, P., Rupnik, M. (eds) Updates on Clostridium difficile in Europe. Advances in Experimental Medicine and Biology(), vol 1050. Springer, Cham. https://doi.org/10.1007/978-3-319-72799-8_13

Download citation

Publish with us

Policies and ethics