Skip to main content

Gait Rehabilitation by Nociceptive Withdrawal Reflex-Based Functional Electrical Therapy

  • Chapter
  • First Online:
Advanced Technologies for the Rehabilitation of Gait and Balance Disorders

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 19))

  • 1641 Accesses

Abstract

The nociceptive withdrawal reflex (NWR) can be used for supporting gait as the spinal stepping generator circuits can also be triggered by robust afferent input [36]. This has been utilised in many assistive functional electrical stimulation devices since the first reports by Liberson [32] who found a functional benefit when stimulating electrically the peroneal nerve during the swing phase. The NWR response is an integrated movement generated by a coordinated activation of several muscles in the limb when the body receives a potentially tissue damaging stimulus. The NWR is generated to ensure adequate and sufficient withdrawal while maintaining balance and ensuring continuation of the ongoing motor programs [4, 41, 49]. This obviously leads to involvement of the contralateral limb to ensure upright posture and balance control. During rhythmic movements like gait, the spinal pattern generators are involved in reflex modulation as the reflex responses are strongly modulated by the phases of the gait cycle [17, 56].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ada L, Dean CM, Hall JM, Bampton J, Crompton S. A treadmill and overground walking program improves walking in persons residing in the community after stroke: a placebo-controlled, randomized trial. Arch Phys Med Rehabil. 2003;84:1486–91.

    Article  Google Scholar 

  2. Andersen OK, Sonnenborg FA, Arendt-Nielsen L. Modular organization of human leg withdrawal reflexes elicited by electrical stimulation of the foot sole. Muscle Nerve. 1999;22:1520–30.

    Article  Google Scholar 

  3. Andersen OK, Sonnenborg FA, Arendt-Nielsen L. Reflex receptive fields for human withdrawal reflexes elicited by non-painful and painful electrical stimulation of the foot sole. Clin Neurophysiol. 2001;112(4):641–649.

    Google Scholar 

  4. Andersen OK. Studies of the organization of the human nociceptive withdrawal reflex. Focus on sensory convergence and stimulation site dependency. Acta Physiol 2007;189 Suppl;654:1–35.

    Google Scholar 

  5. Arendt-Nielsen L, Sonnenborg FA, Andersen OK. Facilitation of the withdrawal reflex by repeated transcutaneous electrical stimulation: an experimental study on central integration in humans. Eur J Appl Physiol. 2000;81:165–73.

    Article  Google Scholar 

  6. Bailey SN, Hardin EC, Kobetic R, Boggs LM, Pinault G, Triolo RJ. Neurotherapeutic and neuroprosthetic effects of implanted functional electrical stimulation for ambulation after incomplete spinal cord injury. J Rehabil Res Dev. 2010;47:7–16.

    Article  Google Scholar 

  7. Bajd T, Kralj A, Karcnik T, Savrin R, Obreza P. Significance of FES-assisted plantarflexion during walking of incomplete SCI subjects. Gait Posture. 1994;2:5–10.

    Article  Google Scholar 

  8. Bogataj U, Gros N, Kljajic M, Acimovic R, Malezic M. The rehabilitation of gait in patients with hemiplegia: a comparison between conventional therapy and multichannel functional electrical stimulation therapy. Phys Ther. 1995;75:490–502.

    Article  Google Scholar 

  9. Bohannon RW, Horton MG, Wikholm JB. Importance of four variables of walking to patients with stroke. Int J Rehabil Res. 1991;14:246–50.

    Article  Google Scholar 

  10. Braun Z, Mizrahi J, Najenson T, Graupe D. Activation of paraplegic patients by functional electrical stimulation: training and biomechanical evaluation. Scand J Rehabil Med Suppl. 1985;12(93–101):93–101.

    Google Scholar 

  11. Carstens E, Ansley D. Hindlimb flexion withdrawal evoked by noxious heat in conscious rats: magnitude measurement of stimulus-response function, suppression by morphine and habituation. J Neurophysiol. 1993;70:621–9.

    Article  Google Scholar 

  12. Crenna P, Frigo C. Evidence of phase-dependent nociceptive reflexes during locomotion in man. Exp Neurol. 1984;85:336–45.

    Article  Google Scholar 

  13. Daly JJ, Roenigk K, Holcomb J, Rogers JM, Butler K, Gansen J, McCabe J, Fredrickson E, Marsolais EB, Ruff RL. A randomized controlled trial of functional neuromuscular stimulation in chronic stroke subjects. Stroke. 2006;37:172–8.

    Article  Google Scholar 

  14. Dimitrijevic MR. Withdrawal reflexes. In: Desmedt JE, editor. New developments in electromyography and clinical neurophysiology, vol. 3. Basel: Karger; 1973. p. 744–50.

    Google Scholar 

  15. Dimitrijevic MR, Faganel J, Gregoric M, Nathan PW, Trontelj JK. Habituation: effects of regular and stochastic stimulation. J Neurol Neurosurg Psychiat. 1972;35:234–42.

    Article  Google Scholar 

  16. Dobkin BH. Clinical practice. Rehabilitation after stroke. N Engl J Med. 2005;352:1677–84.

    Article  Google Scholar 

  17. Duysens J, De GF, Jonkers I. The flexion synergy, mother of all synergies and father of new models of gait. Front Comput Neurosci. 2013;7:14. https://doi.org/10.3389/fncom.2013.00014.eCollection;%2013.:14.

    Article  Google Scholar 

  18. Duysens J, Tax AAM, Tripel M, Dietz V. Phase-dependent reversal of reflexly induced movements during human gait. Exp Brain Res. 1992;90:404–14.

    Article  Google Scholar 

  19. Emborg J, Matjacic Z, Bendtsen JD, Spaich EG, Cikajlo I, Goljar N, Andersen OK. Design and test of a novel closed-loop system that exploits the nociceptive withdrawal reflex for swing-phase support of the hemiparetic gait. IEEE Trans Biomed Eng. 2011;58:960–70.

    Article  Google Scholar 

  20. Faganel J. Electromyographic analysis of human flexion reflex components. In: Desmedt JE, editor. New developments in electromyography and clinical neurophysiology, vol. 3. Basel: Karger; 1973. p. 730–3.

    Google Scholar 

  21. Ferrante S, Pedrocchi A, Ianno M, De ME, Ferrarin M, Ferrigno G. Functional electrical stimulation controlled by artificial neural networks: pilot experiments with simple movements are promising for rehabilitation applications. Funct Neurol. 2004;19:243–52.

    Google Scholar 

  22. Fisher MA, Shahani BT, Young RR. Electrophysiologic analysis of the motor system after stroke: the “suppressive” effect of vibration. Arch Phys Med Rehabil. 1979;60:11–4.

    Google Scholar 

  23. Fuhr T, Quintern J, Riener R, Schmidt G. Walking with WALK! A cooperative, patient-driven neuroprosthetic system. IEEE Eng Med Biol Mag. 2008;27:38–48.

    Article  Google Scholar 

  24. Granat MH, Ferguson AC, Andrews BJ, Delargy M. The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury—observed benefits during gait studies. Paraplegia. 1993;31:207–15.

    Google Scholar 

  25. Grimby L. Normal plantar response: Integration of flexor and extensor reflex components. J Neurol Neurosurg Psychiat. 1963;26:39–50.

    Article  Google Scholar 

  26. Hansen M, Haugland MK. Adaptive fuzzy logic restriction rules for error correction and safe stimulation patterns during functional electrical stimulation. J Med Eng Technol. 2001;25:156–62.

    Article  Google Scholar 

  27. Jonic S, Jankovic T, Gajic V, Popovic D. Three machine learning techniques for automatic determination of rules to control locomotion. IEEE Trans Biomed Eng. 1999;46:300–10.

    Article  Google Scholar 

  28. Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76:27–32.

    Article  Google Scholar 

  29. Kapadia N, Masani K, Catharine CB, Giangregorio LM, Hitzig SL, Richards K, Popovic MR. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on walking competency. J Spinal Cord Med. 2014;37:511–24.

    Article  Google Scholar 

  30. Laufer Y, Dickstein R, Chefez Y, Marcovitz E. The effect of treadmill training on the ambulation of stroke survivors in the early stages of rehabilitation: a randomized study. J Rehabil Res Dev. 2001;38:69–78.

    Google Scholar 

  31. Laursen CB, Gervasio S, Andersen OK, Hennings K, Spaich EG. Novel electrical stimulation paradigm to reduce habituation of the nociceptive withdrawal reflex: preliminary results. Soc Neurosci. 2015; 268.01/BB74 (Ref Type: Abstract).

    Google Scholar 

  32. Liberson WT, Holmquest HJ, Scot D, Dow M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961;42:101–5.

    Google Scholar 

  33. Lynch CL, Popovic MR. A comparison of closed-loop control algorithms for regulating electrically stimulated knee movements in individuals with spinal cord injury. IEEE Trans Neural Syst Rehabil Eng. 2012;20:539–48.

    Article  Google Scholar 

  34. Meinck H-M, Küster S, Benecke R, Conrad B. The flexor reflex—influence of stimulus parameters on the reflex response. Electroenceph clin Neurophysiol. 1985;61:287–98.

    Article  Google Scholar 

  35. Milanov IG. Flexor reflex for assessment of common interneurone activity in spasticity. Electromyogr Clin Neurophysiol. 1992;32:621–9.

    Google Scholar 

  36. Nicol DJ, Granat MH, Baxendale RH, Tuson SJM. Evidence for a human spinal stepping generator. Brain Res. 1995;684:230–2.

    Article  Google Scholar 

  37. Olney SJ, Richards C. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture. 1996;4:136–48.

    Article  Google Scholar 

  38. Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hoolig G, Koch R, Hesse S. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21:17–27.

    Article  Google Scholar 

  39. Richard MA, Spaich EG, Serrao M, Andersen OK. Stimulation site and phase modulation of the withdrawal reflex during gait initiation. Clin Neurophysiol. 2015;126:2289.

    Article  Google Scholar 

  40. Riener R, Fuhr T, Antico D, Quintern J. Modelling and control of the flexion withdrawal reflex for gait neuroprosthesis. In: Sinkjær T, Popovic D, Struijk JJ editors. Proceedings for the 5th annual conference of the international functional electrical stimulation society. Aalborg; 2000. p. 421–4.

    Google Scholar 

  41. Rietdyk S, Patla AE. Context-dependent reflex control: some insights into the role of balance. Exp Brain Res. 1998;119:251–9.

    Article  Google Scholar 

  42. Salbach NM, Mayo NE, Wood-Dauphinee S, Hanley JA, Richards CL, Cote R. A task-orientated intervention enhances walking distance and speed in the first year post stroke: a randomized controlled trial. Clin Rehabil. 2004;18:509–19.

    Article  Google Scholar 

  43. Schouenborg J, Kalliomäki J. Functional organization of the nociceptive withdrawal reflexes. I. Activation of hindlimb muscles in the rat. Exp Brain Res. 1990;83:67–78.

    Article  Google Scholar 

  44. Sepulveda F, Granat MH, Cliquet AJ. Gait restoration in a spinal cord injured subject via neuromuscular electrical stimulation controlled by an artificial neural network. Int J Artif Organs. 1998;21:49–62.

    Google Scholar 

  45. Serrao M, Ranavolo A, Andersen OK, Conte C, Don R, Cortese F, Mari S, Draicchio F, Padua L, Sandrini G, Pierelli F. Adaptive behaviour of the spinal cord in the transition from quiet stance to walking. BMC Neurosci. 2012;13:80.

    Article  Google Scholar 

  46. Shahani BT, Young RR. Human flexor reflexes. J Neurol Neurosurg Psychiat. 1971;34:616–27.

    Article  Google Scholar 

  47. Sivilotti LG, Thompson SWN, Woolf CJ. Rate of rise of the cumulative depolarization evoked by repetitive stimulation of small-caliber afferents is a predictor of action potential windup in rat spinal neurons in vitro. J Neurophysiol. 1993;69:1621–31.

    Article  Google Scholar 

  48. Sonnenborg FA, Andersen OK, Arendt-Nielsen L. Modular organization of excitatory and inhibitory reflex receptive fields elicited by electrical stimulation of the foot sole in man. Clin Neurophysiol. 2000;111:2160–9.

    Article  Google Scholar 

  49. Spaich EG, Arendt-Nielsen L, Andersen OK. Modulation of lower limb withdrawal reflexes during gait: a topographical study. J Neurophysiol. 2004;91:258–66.

    Article  Google Scholar 

  50. Spaich EG, Emborg J, Collet T, Arendt-Nielsen L, Andersen OK. Withdrawal reflex responses evoked by repetitive painful stimulation delivered on the sole of the foot during late stance: site, phase, and frequency modulation. Exp Brain Res. 2009;194:359–68.

    Article  Google Scholar 

  51. Spaich EG, Hinge HH, Arendt-Nielsen L, Andersen OK. Modulation of the withdrawal reflex during hemiplegic gait: effect of stimulation site and gait phase. Clin Neurophysiol. 2006;117:2482–95.

    Article  Google Scholar 

  52. Spaich EG, Svaneborg N, Jorgensen HR, Andersen OK. Rehabilitation of the hemiparetic gait by nociceptive withdrawal reflex-based functional electrical therapy: a randomized, single-blinded study. J Neuroeng Rehabil. 2014;11:81.

    Article  Google Scholar 

  53. Stanic U, Acimovic-Janezic R, Gros N, Trnkoczy A, Bajd T, Kljajic M. Multichannel electrical stimulation for correction of hemiplegic gait. methodology and preliminary results. Scand J Rehabil Med. 1978;10:75–92.

    Google Scholar 

  54. Teixeira-Salmela LF, Olney SJ, Nadeau S, Brouwer B. Muscle strengthening and physical conditioning to reduce impairment and disability in chronic stroke survivors. Arch Phys Med Rehabil. 1999;80:1211–8.

    Article  Google Scholar 

  55. Xu J-X. The frontiers of iterative learning control —part II. Systems, control and information. 2002;46:233–43.

    Google Scholar 

  56. Zehr EP. Neural control of rhythmic human movement: the common core hypothesis. Exerc Sport Sci Rev. 2005;33:54–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Kæseler Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andersen, O.K., Spaich, E.G. (2018). Gait Rehabilitation by Nociceptive Withdrawal Reflex-Based Functional Electrical Therapy. In: Sandrini, G., Homberg, V., Saltuari, L., Smania, N., Pedrocchi, A. (eds) Advanced Technologies for the Rehabilitation of Gait and Balance Disorders. Biosystems & Biorobotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-72736-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72736-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72735-6

  • Online ISBN: 978-3-319-72736-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics