Life Cycle Assessment of Electric Vehicles in Fleet Applications

  • Antal Dér
  • Selin Erkisi-Arici
  • Marek Stachura
  • Felipe Cerdas
  • Stefan Böhme
  • Christoph Herrmann
Chapter
Part of the Sustainable Production, Life Cycle Engineering and Management book series (SPLCEM)

Abstract

Electric vehicle fleets have the potential to decrease transportation related greenhouse gas emissions. However, the technology shift towards electric mobility can be linked to environmental trade-offs that need to be addressed adequately in order to ensure environmental advantages. This chapter presents the evaluation of the environmental impacts of two exemplary electric vehicle fleets in the project Fleets Go Green. The evaluation focuses mainly on the use stage and explores different influencing factors such as electricity mix, ambient temperature and driving patterns.

Notes

Acknowledgements

The authors express their gratitude to the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety for supporting the project “Fleets Go Green—Integrated analysis and evaluation of the environmental performance of electric and plugin-hybrid vehicles in everyday usage on the example of fleet operations” under the reference 16EM1041.

References

  1. Del Duce A, Egede P, Öhlschläger G, Dettmer T, Althaus H-J, Bütler T, Szczechowicz E (2013) eLCAr: guidelines for the LCA of electric vehiclesGoogle Scholar
  2. Bjørn A, Laurent A, Owsianiak M, Olsen SI (2018a) Goal Definition. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment. Springer International Publishing, Cham, pp 67–74CrossRefGoogle Scholar
  3. Bjørn A, Moltesen A, Laurent A, Owsianiak M, Corona A, Birkved M, Hauschild MZ (2018b) Life cycle inventory analysis. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment. Springer International Publishing, Cham, pp 117–165CrossRefGoogle Scholar
  4. Bjørn A, Owsianiak M, Laurent A, Olsen SI, Corona A, Hauschild MZ (2018c) Scope Definition. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment. Springer International Publishing, Cham, pp 75–116CrossRefGoogle Scholar
  5. Cerdas F, Egede P, Herrmann C (2018) LCA of Electromobility. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment: theory and practice. Springer International Publishing, Cham, pp 669–693CrossRefGoogle Scholar
  6. de Cauwer C, van Mierlo J, Coosemans T (2015) Energy consumption prediction for electric vehicles based on real-world data. Energies 8:8573–8593.  https://doi.org/10.3390/en8088573CrossRefGoogle Scholar
  7. Egede P, Dettmer T, Herrmann C, Kara S (2015) Life cycle assessment of electric vehicles—a framework to consider influencing factors. Procedia CIRP 29:233–238.  https://doi.org/10.1016/j.procir.2015.02.185CrossRefGoogle Scholar
  8. Ellingsen LA-W, Singh B, Strømman AH (2016) The size and range effect: lifecycle greenhouse gas emissions of electric vehicles. Environ Res Lett 11:54010CrossRefGoogle Scholar
  9. Fiori C, Ahn K, Rakha H (2016) Power-based electric vehicle energy consumption model: model development and validation. Appl Energy 168:257–268CrossRefGoogle Scholar
  10. Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M (2005) The ecoinvent database: overview and methodological framework (7 pp). Int J Life Cycle Assess 10:3–9.  https://doi.org/10.1065/lca2004.10.181.1CrossRefGoogle Scholar
  11. Hauschild MZ, Bonou A, Olsen SI (2018) Life Cycle Interpretation. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment. Springer International Publishing, Cham, pp 323–334CrossRefGoogle Scholar
  12. Hawkins TR, Gausen OM, Strømman AH (2012) Environmental impacts of hybrid and electric vehicles—a review. Int J Life Cycle Assess 17:997–1014.  https://doi.org/10.1007/s11367-012-0440-9CrossRefGoogle Scholar
  13. Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17:53–64.  https://doi.org/10.1111/j.1530-9290.2012.00532.xCrossRefGoogle Scholar
  14. ISO 14040:2006 (2006) Environmental management—life cycle assessment—principles and frameworkGoogle Scholar
  15. Kasten P, Zimmer W, Leppler S (2011) CO2-Minderungspotenziale durch den Einsatz von elektrischen Fahrzeugen in Dienstwagenflotten: Ergebnisbericht im Rahmen des Projektes „Future Fleet“ AP 2.7. http://www.oeko.de/oekodoc/1343/2011-027-de.pdf
  16. KBA (2015) Neuzulassungen von Pkw im Jahr 2015 nach privaten und gewerblichen Haltern. https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/Halter/2015/2015_n_halter_dusl.html
  17. Li W, Stanula P, Egede P, Kara S, Herrmann C (2016) Determining the main factors influencing the energy consumption of electric vehicles in the usage phase. Procedia CIRP 48:352–357.  https://doi.org/10.1016/j.procir.2016.03.014CrossRefGoogle Scholar
  18. Nordelöf A, Messagie M, Tillman A-M, Ljunggren Söderman M, van Mierlo J (2014) Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles–what can we learn from life cycle assessment? Int J Life Cycle Assess 19:1866–1890.  https://doi.org/10.1007/s11367-014-0788-0CrossRefGoogle Scholar
  19. Rosenbaum RK, Hauschild MZ, Boulay A-M, Fantke P, Laurent A, Núñez M, Vieira M (2018) Life cycle impact assessment. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment: theory and practice. Springer International Publishing, Cham, pp 167–270CrossRefGoogle Scholar
  20. Tukker A, de Bruijn H, van Duin R, Huijbregts MAJ, Guinee JB, Gorree M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA (2002) Handbook on life cycle assessment, vol 7. Springer, Netherlands, DordrechtGoogle Scholar
  21. VDA 231-106 (1997) Werkstoff-Klassifizierung im Kraftfahrzeugbau – Aufbau und Nomenklatur. VDA, BerlinGoogle Scholar
  22. Wang J-b, Liu K, Yamamoto T, Morikawa T (2017) Improving estimation accuracy for electric vehicle energy consumption considering the effects of ambient temperature. Energy Procedia 105:2904–2909.  https://doi.org/10.1016/j.egypro.2017.03.655CrossRefGoogle Scholar
  23. Yuan X, Zhang C, Hong G, Huang X, Li L (2017) Method for evaluating the real-world driving energy consumptions of electric vehicles. Energy 141:1955–1968.  https://doi.org/10.1016/j.energy.2017.11.134CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antal Dér
    • 1
  • Selin Erkisi-Arici
    • 1
  • Marek Stachura
    • 2
  • Felipe Cerdas
    • 1
  • Stefan Böhme
    • 1
  • Christoph Herrmann
    • 1
  1. 1.Institute of Machine Tools and Production Technology (IWF)Technische Universität BraunschweigBraunschweigGermany
  2. 2.IPoint-Systems GmbHViennaAustria

Personalised recommendations