Features of Stiff Vacuum Extrusion as a Method of Briquetting Natural and Anthropogenic Raw Materials

  • Ivan Kurunov
  • Aitber BizhanovEmail author
Part of the Topics in Mining, Metallurgy and Materials Engineering book series (TMMME)


Stiff vacuum extrusion (SVE) technology is applied in the production of ceramic bricks in 64 countries around the world, including the United States, Britain, Germany, South Korea, and South Africa. The world’s largest brick factory in Saudi Arabia produces a million bricks per day using SVE technology [1].


  1. 1.
    Bender, W., Haendle, F.: Brick and tile making, procedures and operating practice in the heavy clay Industries. Bauverlag GMBH, Berlin (1985)Google Scholar
  2. 2.
    Händle, F. (ed.): Extrusion in Ceramics, 468 C. Springer, Berlin (2007)Google Scholar
  3. 3.
    Gregory, R.: Briquetting coal without a binder. Colliery Guardian 201, 5191 (1960)Google Scholar
  4. 4.
    Kaya, E., Glogg, R., Kumar, S.R.: Particle shape modification comminution. Kona 20, 185–195 (2002)Google Scholar
  5. 5.
    Ulusoy, U., Hicyilmaz, C., Yekeler, M.: Role of shape properties of calcite and barite particles on apparent hydrophobicity. Chem. Eng. Process. 43, 1047–1053 (2003)Google Scholar
  6. 6.
    Ulusoy, U., Yekeler, M., Hicyilmaz, C.: Determination of the shape, morphological and wettability properties of quartz and their correlations. Mineral Eng. 16, 951–964 (2003)Google Scholar
  7. 7.
    Beirne, T., Hutcheon, J.M.: The shape of ground petroleum coke particles Brit. J. Appl. Phys. 13, 576 (1954)Google Scholar
  8. 8.
    Bizhanov, A.M., Kurunov, I.F., Durov, N.M., et al.: Mechanical strength of BREX: Part I. Metallurg 7, 32–35 (2012)Google Scholar
  9. 9.
    Bizhanov, A.M., Kurunov, I.F., Durov, N.M., et al.: Mechanical strength of BREX: Part II. Metallurg 10, 36–40 (2012)Google Scholar
  10. 10.
    Malygin, G.A.: Plasticity and strength of micro—and nanocrystalline materials. Solid State Phys. 49(6), 961–982 (2007)Google Scholar
  11. 11.
    Kawatra, S.K.: Effects of bentonite fiber formation in iron ore pelletization. Int. J. Miner. Process. 65, 141–149 (2002)Google Scholar
  12. 12.
    Koizumi, H., Yamaguchi, A., Doi, T., Noma, F.: Fundamental development of iron ore briquetting technology. ISIJ 74(6), 22–29 (1988)Google Scholar
  13. 13.
    Japan.: Patent S63196689 (A), (1988)Google Scholar
  14. 14.
    Bogdan, E.A., Cole, R.L.: US Patent 5395441, 1995Google Scholar
  15. 15.
    Hideo, K., Nobuhide, O.: Experimental study on swelling characteristics of compacted bentonite. Can. Geotech. J. 40, 460–475 (2003)Google Scholar
  16. 16.
    Dvorkin, L.I., Dvorkin, O.L.: Building Mineral Binding Materials. Infra Inzheneriya, Moscow (2011)Google Scholar
  17. 17.
    Ozhogin, V.V.: Foundations of Theory and Technology of Briquetting of Pulverized Metallurgical Raw Materials: Monograph. PGTU, Mariupol (2010), 442pGoogle Scholar
  18. 18.
    Bulatov, A.I., Danishevskii, V.S.: Grouting Mortars. Nedra, Moscow (1987)Google Scholar
  19. 19.
    Jones, G.K.: Chemistry and flow properties of bentonite grouts. In: Proceedings of Symposium on Grouts and Drilling Muds in Engineering Practice, pp. 22–28. Butteworths, London (1963)Google Scholar
  20. 20.
    Shmit’ko, E.I., Krylov, A.V., Shatalova, V.V.: Chemistry of Cement and Binding Substances. Prospekt Nauki, St. Petersburg (2006)Google Scholar
  21. 21.
    Moroz, I.I.: Technology of Structural Ceramics. Ecolit, Moscow (2011), 384pGoogle Scholar
  22. 22.
    Ruzhinskiy, S., et al.: All about Foam Concrete. 2nd ed., improved and expanded. OOO Stroy Beton (Stroy Beton, LLC), St. Petersburg (2006), 630pGoogle Scholar
  23. 23.
    Bizhanov, A.M., Eriklintsev, I.V., Kozlov, S.A., Troshkin, O.V.: On Spiral Couette-Poiseuille Flow in Simplified Extruder Problem. J. Comput. Math. Math. Phys. (2017) (in print)Google Scholar
  24. 24.
    Händle, F., Laenger, F., Laenger, J.: Determining the Forming pressures in the extrusion of ceramic bodies with the help of the Benbow-Bridgwater equation using the capillar check. Process Eng. 92(10–11), 1–7 (2015)Google Scholar
  25. 25.
    Batchelor, G.K.: An introduction to fluid dynamics. Cambridge University Press, Cambridge (1967), 615pGoogle Scholar
  26. 26.
    Loytsyanskiy, L.G.: Mechanics of Liquids and Gases. Science, Moscow (1987), 840pGoogle Scholar
  27. 27.
    Abramovich, G.N.: Applied Gas Dynamics. Part 1. Science, Moscow (1991), 600pGoogle Scholar
  28. 28.
    Bingham, E.C.: Fluidity and Plasticity. McCraw-Hill Book Company, Inc., New York, London (1922), 439pGoogle Scholar
  29. 29.
    Ishlinskiy, A.Y., Ivlev, D.D.: Mathematical Theory of Plasticity. Publishing House of Physical and Mathematical and Technical Literature, Moscow (2001), 704pGoogle Scholar
  30. 30.
    Laenger, K.-F., Laenger, F., Geiger, K.: Wall slip of ceramic extrusion bodies, Part 2. Process Eng. 93(4–5), 1–6 (2016)Google Scholar
  31. 31.
    Belotserkovskiy, O.M., Betelin, V.B., Borisevich, V.D., Denisenko, V.V., Kozlov, S.A., Eriklintsev, I.V., Konyukhov, A.V., Oparin, A.M., Troshkin, O.V.: Toward theory of counterflow in rotating viscous heat-conducting gas. J. Comput. Math. Math. Phys. 51(2), 222–236 (2011)CrossRefGoogle Scholar
  32. 32.
    Troshkin, O.V.: Elements of Mathematical Hydrodynamics and Hydrodynamic Stability. ISBN-978-3-659-93972-3Google Scholar
  33. 33.
    Landau, L.D., Lifshitz, E.M.: Theoretical Physics V.7. Theory of Elasticity. Science, Moscow (1987), 248pGoogle Scholar
  34. 34.
    Galitskov, S.Y., Nazarov, M.A.: Simulation of Velocity Field of Shear Deformations of Ceramic Mass in Forming Unit of Screw Extruder. Fundamental Studies vol. 8. pp. 29–32 (2013)Google Scholar
  35. 35.
    Joseph, D.: Stability of Fluid Motions. World, Moscow (1981), 638pGoogle Scholar
  36. 36.
    Mitsoulis, E.: Flows of viscoplastic materials: models and computations. Rheology Reviews 135–178 (2007)Google Scholar
  37. 37.
    Electronic resource Abaqus User Manual, Version 6.12 Documentation
  38. 38.
    Sobolev, A.A., Melnikov, P.A., Tyutyunnik, A.O.: Movement of Particles in Air Stream, vol. 3, Issue No. 17, pp. 82–86. Vector of Science of Togliatti State UniversityGoogle Scholar
  39. 39.
    Deryagin, B.V., Churaev, N.V., Muller, V.M.: Surface Forces. Science, Moscow (1985), 400pGoogle Scholar
  40. 40.
    GOST (All-Union State Standard) 2787–75 Metals Ferrous Secondary. General specificationsGoogle Scholar
  41. 41.
    Bizhanov, A.M., Kurunov, I.F., Podgorodetskiy, G.S., Nushtaev, D.V.: Investigation of Mechanism of Brex Destruction under Static and Impact Loads, vol. 8. pp. 26–31. Metallurgist (2014)Google Scholar
  42. 42.
    GOST (All-Union State Standard) 25471-82 Iron Ores, Agglomerates and Pellets. Method for Determining Drop StrengthGoogle Scholar
  43. 43.
    Dorofeev, G.A., Barsukova, E.A.: On the choice of rational method of agglomeration of fine materials of anthropogenic and natural origin. Ferrous Metall. 12, 73–79 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Novolipetsk Steel CompanyLipetskRussia
  2. 2.MoscowRussia

Personalised recommendations