Advertisement

Introduction

  • Ivan Kurunov
  • Aitber BizhanovEmail author
Chapter
Part of the Topics in Mining, Metallurgy and Materials Engineering book series (TMMME)

Abstract

The development of ferrous metallurgy, the growth of the capacity of blast furnaces (BF) and increased ore consumption required the creation of technology for the agglomeration of natural and fine anthropogenic materials generated during the course of the entire process from iron ore extraction through to iron smelting. The first industrial agglomeration technology, which appeared back in the nineteenth century, was briquetting technology—production of lumps of regular geometric shapes from iron ore fines by applying pressure using different binders or without them, with further drying and firing or curing under natural conditions.

References

  1. 1.
    Pietsch, W.: Agglomeration in Industry Occurrence and Applications, 375p. Wiley, New York (2005)Google Scholar
  2. 2.
    Yuzbashev, L.: Method for the preparation of artificial lumpy ore and artificial lumpy fuel from fines of ores and fossil fuels. Min. J. 2(6), 257–288 (1901)Google Scholar
  3. 3.
    Blast Furnace Process.: Reference Guide. V.1. Moscow. State Scientific and Technical Publishing House of Literature on Ferrous and Non-Ferrous Metallurgy, 647p. (1963)Google Scholar
  4. 4.
  5. 5.
    Steele, R.B.: Agglomeration of steel mill by-products via auger extrusion. In: Proceedings of 23rd Biennial Conference, pp. 205–217. IBA, Seattle, WA, USA (1993)Google Scholar
  6. 6.
    BREX.: Certificate of trademark (service mark) No. 498006, application No. 2012706053 of 02.03.2012. Right holder A.M. BizhanovGoogle Scholar
  7. 7.
    Koizumi, H., Yamaguchi, A., Doi, T., Noma, F.: Fundamental development of iron ore briquetting technology. Tetsu to Hagane 74(6), 962 (1988)Google Scholar
  8. 8.
    Matsui, Y., Sawayama, M., Kasai, A., Yamagata, Y., Noma, F.: Reduction behavior of carbon composite iron ore hot briquette in shaft furnace and scope on blast furnace performance reinforcement. ISIJ Int. 43, 1904 (2003)Google Scholar
  9. 9.
    Ravich, B.M.: Briquetting in Non-Ferrous and Ferrous Metallurgy, p. 232. Metallurgy, Moscow (1975)Google Scholar
  10. 10.
    Astakhov, A.G., Machkovskiy, A.I., Nikitin, A.I., et al.: Agglomerant’s Reference Guide, p. 448. Technics, Kiev (1964)Google Scholar
  11. 11.
    Torok, J.: Briquetting for the steel industry: then and now. In: 32nd Biennale Conference of the Institute for Briquetting and Agglomeration, p. 20. Curran Associates (2013), 25–28 Sept 2011Google Scholar
  12. 12.
    Schwelberger, J., Brunner, C.H., Fleischanderl, A.: Recycling of ferrous by-products in the iron and steel. In: 34th Biennale Conference of the Institute for Briquetting and Agglomeration. Curran Associates (2013), 8–11 Nov 2015Google Scholar
  13. 13.
    Khazanova, T.P.: Production of manganese alloys from poor oxide and carbonate ores. In: Khazanova, T.P., Shirer, G.B., Lyakishev, N.P. (eds.) Development of Ferroalloy Industry in USSR, p. 122. Kiev (1961)Google Scholar
  14. 14.
    Khvichiya, A.P., Mazmishvili, S.M.: Silicomanganese smelting from ore briquettes in furnace with capacity of 16.5 MVA. Steel 2, 138 (1970)Google Scholar
  15. 15.
    Sukhorukov, A.I., Sosedko, P.M., Khitrik, S.I.: Steel 2, 135 (1970)Google Scholar
  16. 16.
    Mazmishvili, S.M.: Development and commercial exploitation of technologies for production of dust ore briquettes and smelting manganese ferroalloys from them. In: Mazmishvili, S.M., Simongulashvili, Z.A. (eds.) News of Higher Institutions, vol. 12, p. 43 (1992)Google Scholar
  17. 17.
    Guzman, I.Y. (ed.): Chemical Technology of Ceramics. Manual for Higher Institutions—Moscow: OOO RIF Stroimaterialy, 496p. Advertising and Publishing Firm Construction Materials, LLC (2003)Google Scholar
  18. 18.
    Kurunov, I.F., Bolshakova, O.G., Shcheglov, E.M., et al.: Metallurgist 6, 36–39 (2007)Google Scholar
  19. 19.
    De Bruin, T., Sundqvist, L.: ICSTI/Ironmaking Conference Proceedings, pp. 1263–1273 (1998)Google Scholar
  20. 20.
    Paananen, T., Pisilä, E.: Improved raw material efficiency in hot metal production, pp. 1–8. METEC-ESTAD, Düsseldorf (2015)Google Scholar
  21. 21.
    Sharma, T., et al.: Effect of porosity on the swelling behaviour of iron ore pellets and briquettes. ISIJ Int. 31, 312 (1991)Google Scholar
  22. 22.
    Sharma, T., et al.: Effect of reduction rate on the swelling behaviour of iron ore pellets. ISIJ lnt. 32, 812 (1992)Google Scholar
  23. 23.
    Sharma, T.: Swelling of iron ore pellets under non-isothermal condition. ISIJ lnt. 32, 960 (1994)Google Scholar
  24. 24.
    Singh, M., Bjorkman, B.: Cold bond agglomerates of iron and steel plant by-products as burden material for blast furnaces. In: Proceedings of REWAS 99: Global Symposium on Recycling, Waste Treatment and Clean Technology, San Sebastian, Spain, vol. 2, pp. 1539–1548 (1999)Google Scholar
  25. 25.
    Nicolle, R., Rist, A.: The mechanism of whisker growth in the reduction of wüstite. Metall. Trans. B 10, 429 (1979)Google Scholar
  26. 26.
    Kempainen, A., Iljana, M., Heikkinen, E.-P., Paananen, T., Mattila, O., Fabritius, T.: ISIJ Int. 54, 1539 (2014)CrossRefGoogle Scholar
  27. 27.
    Titov, V.V., Murat, S.G., Kiselev, N.I.: The use of recycled materials in the charge of blast furnaces. Ecol. Ind. 1, 16–21 (2007)Google Scholar
  28. 28.
  29. 29.
    Kurunov, I.F., Kanaeva, O.G.: Briquetting is New Stage in Development of Technology for Sintering Raw Materials for Blast Furnaces, vol. 5, pp. 27–32. Bulletin of Scientific and Technical and Economic Information “Ferrous Metallurgy” (2005)Google Scholar
  30. 30.
    Kurunov, I.F., Shcheglov, E.M., Kononov, A.I., Bolshakova, O.G. et al.: Investigation of Metallurgical Properties of Briquettes from Technogenic and Natural Raw Materials and Assessment of Effectiveness of Their Application in Blast Furnace Smelting. Part 1, vol. 12, pp. 39–48. Bulletin of Scientific and Technical and Economic Information “Ferrous Metallurgy” (2007)Google Scholar
  31. 31.
    Kurunov, I.F., Shcheglov, E.M., Kononov, A.I., Bolshakova, O.G., et al.: Investigation of Metallurgical Properties of Briquettes from Technogenic and Natural Raw Materials and Assessment of Effectiveness of Their Application in Blast Furnace Smelting. Part 1, vol. 1, pp. 8–16. Bulletin of Scientific and Technical and Economic Information “Ferrous Metallurgy” (2008)Google Scholar
  32. 32.
    Kurunov, I.F., Malysheva, T.Y., Bolshakova, O.G.: Investigation of Phase Composition of Iron-Ore Briquettes in Order to Assess Their Behavior in Blast Furnace, vol. 10, pp. 41–46. Metallurgist (2007)Google Scholar
  33. 33.
    Sergeant, R., Onte, L., Huysse, K., et al.: Sergeant R. Heart management at Sidmar for an Optimal Hot Metal and Slag Evacuation, vol. 2. The 5th European Coke and Ironmaking Congress, Stockholm (2005)Google Scholar
  34. 34.
  35. 35.
    Tupkary, R.H., Tupkary, V.R.: An Introduction to Modern Iron Making. Khanna Publishers, Delhi (2013)Google Scholar
  36. 36.
    Ozhogin, V.V.: Foundations of Theory and Technology of Briquetting of Pulverized Metallurgical Raw Materials: Monograph, 442 p. PGTU, Mariupol (2010)Google Scholar
  37. 37.
    Bizhanov, A.M., Kurunov, I.F., Podgorodetskiy, G.S., et al.: Extrusion Briquettes (Brex) for Ferroalloys Production, vol. 12, p. 52. Metallurgist (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Novolipetsk Steel CompanyLipetskRussia
  2. 2.MoscowRussia

Personalised recommendations