Skip to main content

Within-Event and Between-Events Ground Motion Variability from Earthquake Rupture Scenarios

  • Chapter
  • First Online:

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Measurement of ground motion variability is essential to estimate seismic hazard. Over-estimation of variability can lead to extremely high annual hazard estimates of ground motion exceedance. We explore different parameters that affect the variability of ground motion such as the spatial correlations of kinematic rupture parameters on a finite fault and the corner frequency of the moment-rate spectra. To quantify the variability of ground motion, we simulate kinematic rupture scenarios on several vertical strike-slip faults and compute ground motion using the representation theorem. In particular, for the entire suite of rupture scenarios, we quantify the within-event and the between-events ground motion variability of peak ground acceleration (PGA) and response spectra at several periods, at 40 stations—all approximately at an equal distance of 20 and 50 km from the fault. Both within-event and between-events ground motion variability increase when the slip correlation length on the fault increases. The probability density functions of ground motion tend to truncate at a finite value when the correlation length of slip decreases on the fault, therefore, we do not observe any long-tail distribution of peak ground acceleration when performing several rupture simulations for small correlation lengths. Finally, for a correlation length of 6 km, the within-event and between-events PGA log-normal standard deviations are 0.58 and 0.19, respectively, values slightly smaller than those reported by Boore et al. (Earthq Spectra, 30(3):1057–1085, 2014). The between-events standard deviation is consistently smaller than the within-event for all correlations lengths, a feature that agrees with recent ground motion prediction equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson, N. A. (2006). Seismic hazard assessment: Problems with current practice and future developments. First European Conference on Earthquake Engineering and Seismology. Geneva, Switzerland, 3–8 September 2006.

    Google Scholar 

  • Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3), 1025–1055.

    Google Scholar 

  • Abrahamson, N. A., & Youngs, R. R. (1992). A stable algorithm for regression analyses using the random effects model. Bulletin of the Seismological Society of America, 82(1), 505–510.

    Google Scholar 

  • Aki, K. (1967). Scaling law of seismic spectrum. Journal of Geophysical Research, 72, 1217–1231.

    Google Scholar 

  • Aki, K., & Richards, P. G. (2002). Quantitative seismology, 2nd ed. University Science Books, Sausalito, pp 53–58.

    Google Scholar 

  • Al Atik, L., Abrahamson, N., Bommer, J. J., Scherbaum, F., Cotton, F., & Kuehn, N. (2010). The variability of ground-motion prediction models and its components. Seismological Research Letters, 81(5), 794–801.

    Google Scholar 

  • Anderson, J. G., & Hough, S. E. (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America, 74(4), 1969–1993.

    Google Scholar 

  • Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057–1085.

    Google Scholar 

  • Boore, D. M., Watson-Lamprey, J., & Abrahamson, N. A. (2006). Orientation-independent measures of ground motion. Bulletin of the Seismological Society of America, 96(4A), 1502–1511.

    Google Scholar 

  • Brillinger, D. R., & Preisler, H. K. (1984). An exploratory analysis of the Joyner–Boore attenuation data. Bulletin of the Seismological Society of America, 74, 1441–1450.

    Google Scholar 

  • Brillinger, D. R., & Preisler, H. K. (1985). Further analysis of the Joyner–Boore attenuation data. Bulletin of the Seismological Society of America, 75, 611–614.

    Google Scholar 

  • Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009. (Correction, Ibid (1971), 5002).

    Google Scholar 

  • Brune, J. N. (1971). Correction (to Brune, 1970). Journal of Geophysical Research, 76, 5002.

    Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30(3), 1087–1115.

    Google Scholar 

  • Cario, M. C., & Nelson, B. L. (1997). Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix. Technical Report, Department of Industrial Engineering and Management Sciences. Evanston, Illinois: Northwestern University.

    Google Scholar 

  • Causse, M., Cotton, F., & Mai, P. M. (2010). Constraining the roughness degree of slip heterogeneity. Journal of Geophysical Research: Solid Earth, 115, B05304. https://doi.org/10.1029/2009JB006747.

  • Chiou, B. S. J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3), 1117–1153.

    Google Scholar 

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606.

    Google Scholar 

  • Cotton, F., Archuleta, R., & Causse, M. (2013). What is sigma of the stress drop? Seismological Research Letters, 84(1), 42–48.

    Google Scholar 

  • Crempien, J. G. F., & Archuleta, R. J. (2015). UCSB synthetic broadband ground motion method for kinematic simulations of earthquakes. Seismological Research Letters, 86(1), 61–67.

    Google Scholar 

  • Feller, W. (1971). Law of large numbers for identically distributed variables. An Introduction to Probability Theory and its Applications, 2, 231–234.

    Google Scholar 

  • Goulet, C. A., Abrahamson, N. A., Somerville, P. G., & Wooddell, K. E. (2015). The SCEC Broadband Platform validation exercise for pseudo-spectral acceleration: Methodology for code validation in the context of seismic hazard analyses. Seismological Research Letters, 86(1), 17–26.

    Google Scholar 

  • Hanks, T. C. (1979). b values and x-c seismic source models: Implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion. Journal of Geophysical Research: Solid Earth, 84(B5), 2235–2242.

    Google Scholar 

  • Imtiaz, A., Causse, M., Chaljub, E., & Cotton, F. (2015). Is ground motion variability distance dependent? Insight from finite-source rupture simulations. Bulletin of the Seismological Society of America, 105(2A), 950–962.

    Google Scholar 

  • Kostrov, B. V. (1964). Selfsimilar problems of propagation of shear cracks. Journal of Applied Mathematics and Mechanics, 28(5), 1077–1087.

    Google Scholar 

  • Lashak, A. B., Zare, M., Abedi, H., & Radan, M. Y. (2009). The Application of coefficient of variations in earthquake forecasting. Journal of Seismology and Earthquake Engineering, 11(2), 55.

    Google Scholar 

  • Lavallée, D., & Archuleta, R. J. (2003). Stochastic modeling of slip spatial complexities for the 1979 Imperial Valley, California, earthquake. Geophysical Research Letters, 30(5), 1245. https://doi.org/10.1029/2002GL015839.

  • Lavallée, D., & Archuleta, R. J. (2005). Coupling of the random properties of the source and the ground motion for the 1999 Chi Chi earthquake. Geophysical research letters, 32, L08311. https://doi.org/10.1029/2004GL022202.

  • Lavallée, D., Liu, P., & Archuleta, R. J. (2006). Stochastic model of heterogeneity in earthquake slip spatial distributions. Geophysical Journal International, 165(2), 622–640.

    Google Scholar 

  • Leonard, M. (2010). Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America, 100(5A), 1971–1988.

    Google Scholar 

  • Liu, P., Archuleta, R. J., & Hartzell, S. H. (2006). Prediction of broadband ground-motion time histories: Hybrid low/high-frequency method with correlated random source parameters. Bulletin of the Seismological Society of America, 96(6), 2118–2130.

    Google Scholar 

  • Mai, P. M., & Beroza, G. C. (2002). A spatial random field model to characterize complexity in earthquake slip. Journal of Geophysical Research: Solid Earth, 107(B11). https://doi.org/10.1029/2001JB000588.

  • McGarr, A., & Fletcher, J. B. (2003). Maximum slip in earthquake fault zones, apparent stress, and stick-slip friction. Bulletin of the Seismological Society of America, 93(6), 2355–2362.

    Google Scholar 

  • Ornthammarath, T., Douglas, J., Sigbjo¨rnsson, R., & Lai, C. G. (2011). Assessment of ground motion variability and its effects on seismic hazard analysis: A case study for Iceland. Bulletin of Earthquake Engineering, 9(4), 931–953.

    Google Scholar 

  • Schmedes, J., Archuleta, R. J., & Lavalle´e, D. (2010). Correlation of earthquake source parameters inferred from dynamic rupture simulations. Journal of Geophysical Research: Solid Earth, 115, B03304. https://doi.org/10.1029/2009JB006689.

  • Schmedes, J., Archuleta, R. J., & Lavalle´e, D. (2013). A kinematic rupture model generator incorporating spatial interdependency of earthquake source parameters. Geophysical Journal International, 192(3), 1116–1131.

    Google Scholar 

  • Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., et al. (1999). Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters, 70(1), 59–80.

    Google Scholar 

  • Thingbaijam, K. K., & Mai, P. M. (2016). Evidence for truncated exponential probability distribution of earthquake slip. Bulletin of the Seismological Society of America, 106(4), 1802–1816.

    Google Scholar 

  • Vyas, J. C., Mai, P. M., & Galis, M. (2016). Distance and azimuthal dependence of ground-motion variability for unilateral strike-slip ruptures. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120150298.

  • Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627.

    Google Scholar 

Download references

Acknowledgements

This work has been sponsored by the National Research Center for Integrated Natural Disaster Management (CIGIDEN), CONICYT/FONDAP 15110017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge G. F. Crempien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crempien, J.G.F., Archuleta, R.J. (2018). Within-Event and Between-Events Ground Motion Variability from Earthquake Rupture Scenarios. In: Dalguer, L., Fukushima, Y., Irikura, K., Wu, C. (eds) Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-72709-7_8

Download citation

Publish with us

Policies and ethics