Advertisement

A Microscopic Model of Redistribution of Individuals Inside an ‘Elevator’

  • Marina Dolfin
  • Mirosław Lachowicz
  • Andreas Schadschneider
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

We present and qualitatively analyze a stochastic microscopic model of redistribution of individuals inside a domain which can be thought as representing an elevator. The corresponding mesoscopic model is also derived.

Keywords

Markov jump processes Microscopic model Individuals Elevator 

Mathematics Subject Classification (2010)

Primary: 00A69 35R09 35Q91; Secondary: 91B72. 91B74 39A30 

Notes

Acknowledgements

This work was completed with the support of the university of Messina through the grant Visiting Professor 2016.

References

  1. 1.
    I. Altman, The Environment and Social Behavior: Privacy, Personal Space, Territory, Crowding (Brooks/Cole, Monterey, CA, 1975)Google Scholar
  2. 2.
    J. Banasiak, M. Lachowicz, Methods of Small Parameter in Mathematical Biology (Birkhäuser, Basel, 2014)CrossRefzbMATHGoogle Scholar
  3. 3.
    N. Bellomo, A. Bellouquid, D. Knopoff, From the microscale to collective crowd dynamics. Multiscale Model. Simul. 11, 943–963 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    E. Cristiani, B. Piccoli, A. Tosin (eds.), Multiscale Modeling of Pedestrian Dynamics (Springer, Berlin, 2014)zbMATHGoogle Scholar
  5. 5.
    M. Dolfin, D. Knopoff, M. Lachowicz, A. Schadschneider, Monte Carlo simulation of space redistribution in an inflow process of individuals, in preparationGoogle Scholar
  6. 6.
    M. Dolfin, M. Lachowicz, Z. Szymańska, A General Framework for Multiscale Modeling of Tumor – Immune System Interactions, In Mathematical Oncology, ed. by A. d’Onofrio, A. Gandolfi (Birkhäuser, Basel, 2014), pp. 151–180Google Scholar
  7. 7.
    S.N. Ethier, T.G. Kurtz, Markov Processes, Characterization and Convergence (Wiley, New York, 1986)CrossRefzbMATHGoogle Scholar
  8. 8.
    T. Ezaki, D. Yanagisawa, K. Ohtsuka, K. Nishinari, Simulation of space acquisition process of pedestrians using proxemic floor field model. Physica A 391, 291–299 (2012)CrossRefGoogle Scholar
  9. 9.
    T. Ezaki, K. Ohtsuka, D. Yanagisawa, K. Nishinari, Inflow process: a counterpart of evacuation, in Traffic and Granular Flow 2013, ed. by M. Chraibi, M. Boltes, A. Schadschneider, A., Seyfried (Springer, Berlin, 2015), pp. 227–231Google Scholar
  10. 10.
    T. Ezaki, K. Ohtsuka, M. Chraibi, M. Boltes, D. Yanagisawa, A. Seyfried, A. Schadschneider, K. Nishinari, Inflow process of pedestrians to a confined space. Collective Dyn. 1(A:4), 1–18 (2016)Google Scholar
  11. 11.
    K.A. Forche, Stochastic model of pedestrian inflow to a confined space, Mater’s thesis, University of CologneGoogle Scholar
  12. 12.
    E.T. Hall, The Hidden Dimension (Anchor Books, New York, 1966)Google Scholar
  13. 13.
    W. Klingsch, C. Rogsch, A. Schadschneider, M. Schreckenberg (eds.), Pedestrian and Evacuation Dynamics 2008 (Springer, Berlin, 2010)zbMATHGoogle Scholar
  14. 14.
    M. Lachowicz, Individually-based Markov processes modeling nonlinear systems in mathematical biology. Nonlinear Anal. Real World Appl. 12, 2396–2407 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. Lasota, J.A. Yorke, Exact dynamical systems and the Frobenius–Perron operator. Trans. Am. Math. Soc. 273, 375–384 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    X. Liu, W. Song, L. Fu, Z. Fang, Experimental study of pedestrian inflow in a room with a separate entrance and exit. Physica A 442, 224–238 (2016)CrossRefGoogle Scholar
  17. 17.
    X. Liu, W. Song, L. Fu, W. Lv, Z. Fang, Typical features of pedestrian spatial distribution in the inflow process. Phys. Lett. A 380, 1526–1534 (2016)CrossRefGoogle Scholar
  18. 18.
    M.D. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications. Springer Understanding Complex Systems (Springer, Heidelberg, 2013)CrossRefzbMATHGoogle Scholar
  19. 19.
    R. Rudnicki, Models of population dynamics and their applications in genetics, ed. by M. Lachowicz, J. Miȩkisz. From Genetics to Mathematics (World Scientific, Singapore, 2009), pp. 103–147Google Scholar
  20. 20.
    R. Sommer, Studies in personal space. Sociometry 22, 247–260 (1959)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marina Dolfin
    • 1
  • Mirosław Lachowicz
    • 1
    • 2
  • Andreas Schadschneider
    • 3
  1. 1.Dipartimento di IngegneriaUniversitá di MessinaMessinaItaly
  2. 2.Instytut Matematyki Stosowanej i MechanikiUniwersytet WarszawskiWarsawPoland
  3. 3.Institut für Theoretische PhysikUniversität zu KölnKölnGermany

Personalised recommendations