Dirichlet Type Problems in Polydomains

  • A. Okay ÇelebiEmail author
Conference paper
Part of the Trends in Mathematics book series (TM)


In this paper, we investigate a Dirichlet type problem, known as Riquier problem, for higher order linear complex differential equations in the unit polydisc of \(\mathbb {C}^2\). After deriving a Green’s function, we present the solution for a model equation with homogeneous boundary conditions. Afterwards we obtain the solution of a linear equation for Riquier boundary value problem on the unit polydisc in \(\mathbb {C}^2\).


Dirichlet type problem Riquier problem Polydisc Complex partial differential equations 

Mathematics Subject Classification (2010)

Primary 32W50; Secondary 32A26 



The author is grateful to the anonymous referees for their careful reading which improved the article, and also to Professor Umit Aksoy for her valuable comments and supports.


  1. 1.
    Ü. Aksoy, A.O. Çelebi, Dirichlet problems for generalized n-Poisson equation, in Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations, ed. by B.W. Schulze, M.W. Wong. Operator Theory: Advances and Applications, vol. 205 (Birkhäuser, Basel, 2009), pp. 129–141Google Scholar
  2. 2.
    Ü. Aksoy, A.O. Çelebi, Neumann problem for generalized n-Poisson equation. J. Math. Anal. Appl. 357, 438–446 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ü. Aksoy, A.O. Çelebi, Schwarz problem for higher order linear equations in a polydisc. Complex Var. Elliptic Equ. 62, 1558–1569 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    H. Begehr, Boundary value problems in complex analysis I,II, Boletin de la Asosiación Matemática Venezolana, vol. XII (2005), pp. 65–85, 217–250Google Scholar
  5. 5.
    H. Begehr, Biharmonic Green functions. Le Mathematiche LXI, 395–405 (2006)Google Scholar
  6. 6.
    H. Begehr, A particular polyharmonic Dirichlet problem, in Complex Analysis Potential Theory, ed. by T. Aliyev Azeroglu, T. M. Tamrazov (World Scientific Publishing, Singapore, 2007), pp. 84–115CrossRefGoogle Scholar
  7. 7.
    H. Begehr, Six biharmonic Dirichlet problems in complex analysis, in Function Spaces in Complex and Clifford Analysis (National University Publishers, Hanoi, 2008), pp. 243–252zbMATHGoogle Scholar
  8. 8.
    H.G.W. Begehr, A. Dzhuraev, An Introduction to Several Complex Variables and Partial Differential Equations. Pitman Monographs and Surveys in Pure and Applied Mathematics (Longman, Harlow, 1997)Google Scholar
  9. 9.
    H. Begehr, E. Gaertner, A Dirichlet problem for the inhomogeneous polyharmonic equation in the upper half plane. Georg. Math. J. 14, 33–52 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    H. Begehr, T. Vaitekhovich, Green functions in complex plane domains. Uzbek Math. J. 4, 29–34 (2008)zbMATHGoogle Scholar
  11. 11.
    H. Begehr, T. Vaitekhovich, Iterated Dirichlet problem for the higher order Poisson equation. Le Matematiche LXIII, 139–154 (2008)Google Scholar
  12. 12.
    H. Begehr, T.N.H. Vu, Z. Zhang, Polyharmonic Dirichlet problems. Proc. Steklov Inst. Math. 255, 13–34 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    H. Begehr, J. Du, Y. Wang, A Dirichlet problem for polyharmonic functions. Ann. Mat. Pure Appl. 187, 435–457 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. Krausz, Integraldarstellungen mit Greenschen Funktionen höherer Ordnung in Gebieten und Polygebieten (Integral representations with Green functions of higher order in domains and polydomains). Ph.D. thesis, FU Berlin, 2005.
  15. 15.
    A. Krausz, A general higher-order integral representation formula for polydomains. J. Appl. Funct. Anal. 2(3), 197–222 (2007)MathSciNetzbMATHGoogle Scholar
  16. 16.
    A. Kumar, A generalized Riemann boundary problem in two variables. Arch. Math. (Basel) 62, 531–538 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    S.S. Kutateladze, Fundamentals of Functional Analysis (Kluwer Academic Publishers, Dordrecht-Boston-London, 1996)CrossRefzbMATHGoogle Scholar
  18. 18.
    A. Mohammed, The Riemann-Hilbert problem for certain poly domains and its connection to the Riemann problem. J. Math. Anal. Appl. 343, 706–723 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A. Mohammed, R. Schwarz, , Riemann-Hilbert problems and their connections in polydomains, in Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations. Operator Theory: Advances and Applications, vol. 205 (Birkhäuser, Basel, 2010), pp. 143–166Google Scholar
  20. 20.
    M. Nicolescu, Les functions polyharmonique (Hermann, Paris, 1936)Google Scholar
  21. 21.
    T. Vaitsiakhovich, Boundary value problems for complex partial differential equations in a ring domain, Ph. D. thesis, F.U. Berlin, 2008Google Scholar
  22. 22.
    I.N. Vekua, Generalized Analytic Functions (Pergamon Press, Oxford, 1962)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsYeditepe UniversityIstanbulTurkey

Personalised recommendations