# Ratio of Uniforms

• Luca Martino
• David Luengo
• Joaquín Míguez
Chapter
Part of the Statistics and Computing book series (SCO)

## Abstract

This chapter provides a detailed description of the so-called ratio-of-uniforms (RoU) methods. The RoU and the generalized RoU (GRoU) techniques were introduced in Kinderman and Monahan (ACM Trans Math Softw 3(3):257–260, 1977); Wakefield et al. (Stat Comput 1(2):129–133, 1991) as bivariate transformations of the bidimensional region $$\mathcal {A}_0$$ below the target pdf p o (x) ∝ p(x). To be specific, the RoU techniques can be seen as a transformation of a bidimensional uniform random variable, defined over $$\mathcal {A}_0$$, into another two-dimensional random variable defined over an alternative set $$\mathcal {A}$$. RoU schemes also convert samples uniformly distributed on $$\mathcal {A}$$ into samples with density p o (x) ∝ p(x) (which is equivalent to draw uniformly from $$\mathcal {A}_0$$). Therefore, RoU methods are useful when drawing uniformly from the region $$\mathcal {A}$$ is comparatively simpler than drawing from p o (x) itself (i.e., simpler than drawing uniformly from $$\mathcal {A}_0$$). In general, RoU algorithms are applied in combination with the rejection sampling principle and they turn out especially advantageous when $$\mathcal {A}$$ is bounded. In this chapter, we present first the basic theory underlying RoU methods, and then study in depth the connections with other sampling techniques. Several extensions, as well as different variants and point of views, are discussed.

## References

1. 1.
L. Barabesi, Optimized ratio-of-uniforms method for generating exponential power variates. Stat. Appl. 5, 149–155 (1993)Google Scholar
2. 2.
L. Barabesi, Random Variate Generation by Using the Ratio-of-Uniforms Method. Serie Ricerca-Monografie 1 (Nuova Immagine, Siena, 1993)Google Scholar
3. 3.
G. Barbu, On computer generation of random variables by transformations of uniform varaibles. Soc. Sci. Math. R. S. Rom. Tome 26 74(2), 129–139 (1982)Google Scholar
4. 4.
M.C. Bryson, M.E. Johnson, Constructing and simulating multivariate distributions using Khintchine’s theorem. J. Stat. Comput. Simul. 16(2), 129–137 (1982)Google Scholar
5. 5.
Y.P. Chaubey, G.S. Mudholkar, M.C. Jones, Reciprocal symmetry, unimodality and Khintchine’s theorem. Proc. R. Soc. A Math. Phys. Eng. Sci. 466(2119), 2079–2096 (2010)Google Scholar
6. 6.
Y. Chung, S. Lee, The generalized ratio-of-uniform method. J. Appl. Math. Comput. 4(2), 409–415 (1997)Google Scholar
7. 7.
J.H. Curtiss, On the distribution of the quotient of two chance variables. Ann. Math. Stat. 12(4), 409–421 (1941)Google Scholar
8. 8.
P. Damien, S.G. Walker, Sampling truncated normal, beta, and gamma densities. J. Comput. Graph. Stat. 10(2), 206–215 (2001)Google Scholar
9. 9.
B.M. de Silva, A class of multivariate symmetric stable distributions. J. Multivar. Anal. 8(3), 335–345 (1978)Google Scholar
10. 10.
L. Devroye, Random variate generation for unimodal and monotone densities. Computing 32, 43–68 (1984)Google Scholar
11. 11.
L. Devroye, Non-uniform Random Variate Generation (Springer, New York, 1986)Google Scholar
12. 12.
U. Dieter, Mathematical aspects of various methods for sampling from classical distributions, in Proceedings of Winter Simulation Conference (1989)Google Scholar
13. 13.
J.E. Gentle, Random Number Generation and Monte Carlo Methods (Springer, New York, 2004)
14. 14.
C. Groendyke, Ratio-of-uniforms Markov Chain Monte Carlo for Gaussian process models. Thesis in Statistics, Pennsylvania State University (2008)Google Scholar
15. 15.
W. Hörmann, A rejection technique for sampling from T-concave distributions. ACM Trans. Math. Softw. 21(2), 182–193 (1995)
16. 16.
W. Hörmann, J. Leydold, G. Derflinger, Automatic Nonuniform Random Variate Generation (Springer, New York, 2003)
17. 17.
M.C. Jones, On Khintchine’s theorem and its place in random variate generation. Am. Stat. 56(4), 304–307 (2002)
18. 18.
M.C. Jones, A.D. Lunn, Transformations and random variate generation: generalised ratio-of-uniforms methods. J. Stat. Comput. Simul. 55(1), 49–55 (1996)
19. 19.
A.J. Kinderman, J.F. Monahan, Computer generation of random variables using the ratio of uniform deviates. ACM Trans. Math. Softw. 3(3), 257–260 (1977)
20. 20.
J. Leydold, Automatic sampling with the ratio-of-uniforms method. ACM Trans. Math. Softw. 26(1), 78–98 (2000)
21. 21.
J. Leydold, Short universal generators via generalized ratio-of-uniforms method. Math. Comput. 72, 1453–1471 (2003)
22. 22.
J.S. Liu, Monte Carlo Strategies in Scientific Computing (Springer, New York, 2004)
23. 23.
M.M. Marjanovic, Z. Kadelburg, Limits of composite functions. Teach. Math. 12(1), 1–6 (2009)
24. 24.
G. Marsaglia, Ratios of normal variables and ratios of sums of uniform variables. Am. Stat. Assoc. 60(309), 193–204 (1965)
25. 25.
J. Monahan, An algorithm for generating chi random variables. Trans. Math. Softw. 13(2), 168–172 (1987)
26. 26.
R.A. Olshen, L.J. Savage, A generalized unimodality. J. Appl. Probab. 7(1), 21–34 (1970)
27. 27.
C.J. Perez, J. Martín, C. Rojano, F.J. Girón, Efficient generation of random vectors by using the ratio-uniforms method with ellipsoidal envelopes. Stat. Comput. 18(4), 209–217 (2008)
28. 28.
C.P. Robert, G. Casella, Monte Carlo Statistical Methods (Springer, New York, 2004)
29. 29.
L.A. Shepp, Symmetric random walk. Trans. Am. Math. Soc. 104, 144–153 (1962)
30. 30.
S. Stefanescu, I. Vaduva, On computer generation of random vectors by transformations of uniformly distributed vectors. Computing 39, 141–153 (1987)
31. 31.
I. Vaduva, Computer generation of random vectors based on transformations on uniform distributed vectors, in Proceedings of Sixth Conference on Probability Theory, Brasov (1982), pp. 589–598Google Scholar
32. 32.
J.C. Wakefield, A.E. Gelfand, A.F.M. Smith, Efficient generation of random variates via the ratio-of-uniforms method. Stat. Comput. 1(2), 129–133 (1991)

© Springer International Publishing AG, part of Springer Nature 2018

## Authors and Affiliations

• Luca Martino
• 1
• David Luengo
• 2
• Joaquín Míguez
• 1