Skip to main content

Accept–Reject Methods

  • Chapter
  • First Online:
Independent Random Sampling Methods

Part of the book series: Statistics and Computing ((SCO))

Abstract

The accept/reject method, also known as rejection sampling (RS), was suggested by John von Neumann in 1951. It is a classical Monte Carlo technique for universal sampling that can be used to generate samples virtually from any target density p o (x) by drawing from a simpler proposal density π(x). The sample is either accepted or rejected by an adequate test of the ratio of the two pdfs, and it can be proved that accepted samples are actually distributed according to the target distribution. Specifically, the RS algorithm can be viewed as choosing a subsequence of i.i.d. realizations from the proposal density π(x) in such a way that the elements of the subsequence have density p o (x).

In this chapter, we present the basic theory of RS as well as different variants found in the literature. Computational cost issues and the range of applications are analyzed in depth. Several combinations with other Monte Carlo techniques are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Otherwise, if \(c_{\pi }=\int _{\mathcal {D}} \pi (x)dx \neq 1\), the acceptance rate is given by the more general expression \({\hat a}=\frac {c}{Lc_\pi }\).

  2. 2.

    However, there exist some variations in the literature [34], [41, Chap. 4] that may extend the applicability of this technique.

  3. 3.

    Indeed, as discussed in Sect. 3.2.4, the simplest scenario to use the RS algorithm occurs when the target density is bounded with bounded support. In this case, the proposal π(x) can be a uniform pdf and other RS schemes such as the band rejection method (Sect. 3.4) can be applied.

  4. 4.

    We assume normalized functions for simplicity of presentation. Unnormalized, integrable functions can be handled as well.

References

  1. J.H. Ahrens, Sampling from general distributions by suboptimal division of domains. Grazer Math. Berichte 319, 20 (1993)

    MATH  Google Scholar 

  2. J.H. Ahrens, A one-table method for sampling from continuous and discrete distributions. Computing 54(2), 127–146 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. N.C. Beaulieu, C. Cheng, Efficient Nakagami-m fading channel simulation. IEEE Trans. Veh. Technol. 54(2), 413–424 (2005)

    Article  Google Scholar 

  4. A. Bignami, A. De Matteis, A note on sampling from combinations of distributions. J. Inst. Math. Appl. 8(1), 80–81 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Botts, W. Hörmann, J. Leydold, Transformed density rejection with inflection points. Stat. Comput. 23, 251–260 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.C. Butcher, Random sampling from the normal distribution. Comput. J. 3, 251–253 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  7. B.S. Caffo, J.G. Booth, A.C. Davison, Empirical supremum rejection sampling. Biometrika 89(4), 745–754 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Casella, C.P. Robert, Post-processing accept-reject samples: recycling and rescaling. J. Comput. Graph. Stat. 7(2), 139–157 (1998)

    MathSciNet  Google Scholar 

  9. R. Chen, Another look at rejection sampling through importance sampling. Stat. Probab. Lett. 72, 277–283 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. R.C.H. Cheng, The generation of gamma variables with non-integral shape parameter. J. R. Stat. Soc. Ser. C Appl. Stat. 26, 71–75 (1977)

    Google Scholar 

  11. J. Dagpunar, Principles of Random Variate Generation (Clarendon Press, Oxford/New York, 1988)

    MATH  Google Scholar 

  12. L. Devroye, Random variate generation for unimodal and monotone densities. Computing 32, 43–68 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Devroye, Non-Uniform Random Variate Generation (Springer, New York, 1986)

    Book  MATH  Google Scholar 

  14. W.R. Gilks, N.G. Best, K.K.C. Tan, Adaptive rejection Metropolis sampling within Gibbs sampling. Appl. Stat. 44(4), 455–472 (1995)

    Article  MATH  Google Scholar 

  15. J.A. Greenwood, Moments of time to generate random variables by rejection. Ann. Inst. Stat. Math. 28, 399–401 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Hörmann, The transformed rejection method for generating Poisson random variables. Insur. Math. Econ. 12(1), 39–45 (1993)

    Article  Google Scholar 

  17. W. Hörmann, A note on the performance of the Ahrens algorithm. Computing 69, 83–89 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Hörmann, G. Derflinger, The transformed rejection method for generating random variables, an alternative to the ratio of uniforms method. Commun. Stat. Simul. Comput. 23, 847–860 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Hörmann, J. Leydold, G. Derflinger, Automatic Nonuniform Random Variate Generation (Springer, New York, 2003)

    MATH  Google Scholar 

  20. R.A. Kronmal, A.V. Peterson, A variant of the acceptance-rejection method for computer generation of random variables. J. Am. Stat. Assoc. 76(374), 446–451 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. R.A. Kronmal, A.V. Peterson, An acceptance-complement analogue of the mixture-plus-acceptance-rejection method for generating random variables. ACM Trans. Math. Softw. 10(3), 271–281 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. P.K. Kythe, M.R. Schaferkotter, Handbook of Computational Methods for Integration (Chapman and Hall/CRC, Boca Raton, 2004)

    Book  MATH  Google Scholar 

  23. J. Leydold, J. Janka, W. Hörmann, Variants of transformed density rejection and correlation induction, in Monte Carlo and Quasi-Monte Carlo Methods 2000 (Springer, Heidelberg, 2002), pp. 345–356

    Google Scholar 

  24. J.S. Liu, Monte Carlo Strategies in Scientific Computing (Springer, New York, 2004)

    Book  Google Scholar 

  25. J.S. Liu, R. Chen, W.H. Wong, Rejection control and sequential importance sampling. J. Am. Stat. Assoc. 93(443), 1022–1031 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Luengo, L. Martino, Almost rejectionless sampling from Nakagami-m distributions (m ≥ 1). IET Electron. Lett. 48(24), 1559–1561 (2012)

    Google Scholar 

  27. I. Lux, Another special method to sample some probability density functions. Computing 21, 359–364 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Marsaglia, The exact-approximation method for generating random variables in a computer. Am. Stat. Assoc. 79(385), 218–221 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Marsaglia, W.W. Tsang, The ziggurat method for generating random variables. J. Stat. Softw. 8(5), 1–7 (2000)

    Google Scholar 

  30. L. Martino, J. Míguez, A novel rejection sampling scheme for posterior probability distributions, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2009)

    Google Scholar 

  31. L. Martino, J. Read, D. Luengo, Independent doubly adaptive rejection metropolis sampling within Gibbs sampling. IEEE Trans. Signal Process. 63(12), 3123–3138 (2015)

    Article  MathSciNet  Google Scholar 

  32. L. Martino, H. Yang, D. Luengo, J. Kanniainen, J. Corander, A fast universal self-tuned sampler within Gibbs sampling. Dig. Signal Process. 47, 68–83 (2015)

    Article  MathSciNet  Google Scholar 

  33. L. Martino, D. Luengo, Extremely efficient acceptance-rejection method for simulating uncorrelated Nakagami fading channels. Commun. Stat. Simul. Comput. (2018, to appear)

    Google Scholar 

  34. W.K. Pang, Z.H. Yang, S.H. Hou, P.K. Leung, Non-uniform random variate generation by the vertical strip method. Eur. J. Oper. Res. 142, 595–609 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. W.H. Payne, Normal random numbers: using machine analysis to choose the best algorithm. ACM Trans. Math. Softw. 4, 346–358 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. J.G. Proakis, Digital Communications, 4th edn. (McGraw-Hill, Singapore, 2000)

    MATH  Google Scholar 

  37. C.P. Robert, G. Casella, Monte Carlo Statistical Methods (Springer, New York, 2004)

    Book  MATH  Google Scholar 

  38. M. Sibuya, Further consideration on normal random variable generator. Ann. Inst. Stat. Math. 14, 159–165 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  39. L. Tierney, Exploring posterior distributions using Markov Chains, in Computer Science and Statistics: Proceedings of IEEE 23rd Symposium on the Interface (1991), pp. 563–570

    Google Scholar 

  40. L. Tierney, Markov chains for exploring posterior distributions. Ann. Stat. 22(4), 1701–1728 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. M.D. Troutt, W.K. Pang, S.H. Hou, Vertical Density Representation and Its Applications (World Scientific, Singapore, 2004)

    Book  MATH  Google Scholar 

  42. I. Vaduva, On computer generation of gamma random variables by rejection and composition procedures. Math. Oper. Stat. Ser. Stat. 8, 545–576 (1977)

    MathSciNet  MATH  Google Scholar 

  43. J. von Neumann, Various techniques in connection with random digits, in Monte Carlo Methods, ed. by A.S. Householder, G.E. Forsythe, H.H. Germond. National Bureau of Standards Applied Mathematics Series (U.S. Government Printing Office, Washington, DC, 1951), pp. 36–38

    Google Scholar 

  44. C.S. Wallace, Transformed rejection generators for gamma and normal pseudo-random variables. Aust. Comput. J. 8, 103–105 (1976)

    MathSciNet  MATH  Google Scholar 

  45. Q.M. Zhu, X.Y. Dang, D.Z. Xu, X.M. Chen, Highly efficient rejection method for generating Nakagami-m sequences. IET Electron. Lett. 47(19), 1100–1101 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martino, L., Luengo, D., Míguez, J. (2018). Accept–Reject Methods. In: Independent Random Sampling Methods. Statistics and Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-72634-2_3

Download citation

Publish with us

Policies and ethics