Advertisement

Magnetic Resonance Imaging Methods for Assessing Cirrhosis and Portal Hypertension

  • Naaventhan Palaniyappan
  • Indra Neil Guha
  • Guruprasad Padur Aithal
Chapter

Abstract

Magnetic resonance imaging (MRI) has been widely used for the detection and characterisation of focal lesions of the liver. Its ability to distinguish the physical properties of the tissue as well as the vasculature with contrast enhancement has made MRI the gold-standard test for the diagnosis of hepatocellular carcinoma. Both of these properties should make MRI an attractive imaging modality in assessing chronic liver disease and hence, MRI methodologies for the evaluation and stratification of chronic liver disease are being developed recently. MRI permits assessment of the whole liver in contrast to the 1 /50,000th portion of the organ obtained by liver biopsy, the current gold standard for the evaluation of the degree of liver injury, inflammation or scarring. Routine liver biochemistry or ultrasound examinations that have been used for decades lack sensitivity to estimate the degree of liver pathology, therefore aren’t useful in patient stratification, prognostication or monitoring. MRI is non-invasive, widely available technology with the most potential to develop further in the future. MRI does not involve ionising radiation, which makes it a preferable, especially for repeated assessments in surveillance. In this chapter, we discuss the advances in MRI in diagnosing and assessing cirrhosis and portal hypertension. The role of magnetic resonance elastography (MRE) is discussed separately.

References

  1. 1.
    Venkatesh SK, Yin M, Takahashi N, Glockner JF, Talwalkar JA, Ehman RL. Non-invasive detection of liver fibrosis: MR imaging features vs. MR elastography. Abdom Imaging. 2015;40(4):766–75.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Awaya H, Mitchell DG, Kamishima T, Holland G, Ito K, Matsumoto T. Cirrhosis: modified caudate-right lobe ratio. Radiology. 2002;224(3):769–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Ferrucci JT, Stark DD. Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. AJR Am J Roentgenol. 1990;155(5):943–50.CrossRefPubMedGoogle Scholar
  4. 4.
    Lucidarme O, Baleston F, Cadi M, Bellin MF, Charlotte F, Ratziu V, Grenier PA. Non-invasive detection of liver fibrosis: is superparamagnetic iron oxide particle-enhanced MR imaging a contributive technique? Eur Radiol. 2003;13(3):467–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Aguirre DA, Behling CA, Alpert E, Hassanein TI, Sirlin CB. Liver fibrosis: noninvasive diagnosis with double contrast material-enhanced MR imaging. Radiology. 2006;239(2):425–37.CrossRefPubMedGoogle Scholar
  6. 6.
    Faria SC, Ganesan K, Mwangi I, Shiehmorteza M, Viamonte B, Mazhar S, Peterson M, Kono Y, Santillan C, Casola G, Sirlin CB. MR imaging of liver fibrosis: current state of the art. Radiographics. 2009;29(6):1615–36.CrossRefPubMedGoogle Scholar
  7. 7.
    Pandharipande PV, Krinsky GA, Rusinek H, Lee VS. Perfusion imaging of the liver: current challenges and future goals. Radiology. 2005;234(3):661–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Materne R, Smith AM, Peeters F, Dehoux JP, Keyeux A, Horsmans Y, Van Beers BE. Assessment of hepatic perfusion parameters with dynamic MRI. Magn Reson Med. 2002;47(1):135–42.CrossRefPubMedGoogle Scholar
  9. 9.
    Van Beers BE, Materne R, Annet L, Hermoye L, Sempoux C, Peeters F, Smith AM, Jamart J, Horsmans Y. Capillarization of the sinusoids in liver fibrosis: noninvasive assessment with contrast-enhanced MRI in the rabbit. Magn Reson Med. 2003;49(4):692–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Annet L, Materne R, Danse E, Jamart J, Horsmans Y, Van Beers BE. Hepatic flow parameters measured with MR imaging and Doppler US: correlations with degree of cirrhosis and portal hypertension. Radiology. 2003;229(2):409–14.CrossRefPubMedGoogle Scholar
  11. 11.
    Hagiwara M, Rusinek H, Lee VS, Losada M, Bannan MA, Krinsky GA, Taouli B. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging – initial experience. Radiology. 2008;246(3):926–34.CrossRefPubMedGoogle Scholar
  12. 12.
    Thomsen HS, Marckmann P, Logager VB. Update on nephrogenic systemic fibrosis. Magn Reson Imaging Clin N Am. 2008;16(4):551–60. viiCrossRefPubMedGoogle Scholar
  13. 13.
    Lewin M, Poujol-Robert A, Boelle PY, Wendum D, Lasnier E, Viallon M, Guechot J, Hoeffel C, Arrive L, Tubiana JM, Poupon R. Diffusion-weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C. Hepatology. 2007;46(3):658–65.CrossRefPubMedGoogle Scholar
  14. 14.
    Taouli B, Ehman RL, Reeder SB. Advanced MRI methods for assessment of chronic liver disease. AJR Am J Roentgenol. 2009;193(1):14–27.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Klasen J, Lanzman RS, Wittsack HJ, Kircheis G, Schek J, Quentin M, Antoch G, Haussinger D, Blondin D. Diffusion-weighted imaging (DWI) of the spleen in patients with liver cirrhosis and portal hypertension. Magn Reson Imaging. 2013;31(7):1092–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Aube C. Imaging modalities for the diagnosis of hepatic fibrosis and cirrhosis. Clin Res Hepatol Gastroenterol. 2015;39(1):38–44.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang B, Liang L, Dong Y, Lian Z, Chen W, Liang C, Zhang S. Intravoxel incoherent motion MR imaging for staging of hepatic fibrosis. PLoS One. 2016;11(1):e0147789.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee Y, Lee SS, Kim N, Kim E, Kim YJ, Yun SC, Kuhn B, Kim IS, Park SH, Kim SY, Lee MG. Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology. 2015;274(2):405–15.CrossRefPubMedGoogle Scholar
  19. 19.
    Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Thomsen C, Christoffersen P, Henriksen O, Juhl E. Prolonged T1 in patients with liver-cirrhosis – an invivo MRI study. Magn Reson Imaging. 1990;8(5):599–604.CrossRefPubMedGoogle Scholar
  21. 21.
    Heye T, Yang SR, Bock M, Brost S, Weigand K, Longerich T, Kauczor HU, Hosch W. MR relaxometry of the liver: significant elevation of T1 relaxation time in patients with liver cirrhosis. Eur Radiol. 2012;22(6):1224–32.CrossRefPubMedGoogle Scholar
  22. 22.
    Banerjee R, Pavlides M, Tunnicliffe EM, Piechnik SK, Sarania N, Philips R, Collier JD, Booth JC, Schneider JE, Wang LM, Delaney DW, Fleming KA, Robson MD, Barnes E, Neubauer S. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol. 2014;60(1):69–77.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mozes FE, Tunnicliffe EM, Pavlides M, Robson MD. Influence of fat on liver T1 measurements using modified Look-Locker inversion recovery (MOLLI) methods at 3T. J Magn Reson Imaging. 2016;44(1):105–11.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pavlides M, Banerjee R, Sellwood J, Kelly CJ, Robson MD, Booth JC, Collier J, Neubauer S, Barnes E. Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease. J Hepatol. 2016;64(2):308–15.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hoad CL, Palaniyappan N, Kaye P, Chernova Y, James MW, Costigan C, Austin A, Marciani L, Gowland PA, Guha IN, Francis ST, Aithal GP. A study of T1 relaxation time as a measure of liver fibrosis and the influence of confounding histological factors. NMR Biomed. 2015;28(6):706–14.CrossRefPubMedGoogle Scholar
  26. 26.
    Agrawal S, Hoad CL, Francis ST, Guha IN, Kaye P, Aithal GP. Visual morphometry and three non-invasive markers in the evaluation of liver fibrosis in chronic liver disease. Scand J Gastroenterol. 2017;52(1):107–15.CrossRefPubMedGoogle Scholar
  27. 27.
    Reynaert H, Thompson MG, Thomas T, Geerts A. Hepatic stellate cells: role in microcirculation and pathophysiology of portal hypertension. Gut. 2002;50(4):571–81.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Burkart DJ, Johnson CD, Morton MJ, Wolf RL, Ehman RL. Volumetric flow-rates in the portal venous system – measurement with cine phase-contrast MR imaging. Am J Roentgenol. 1993;160(5):1113–8.CrossRefGoogle Scholar
  29. 29.
    Gouya H, Vignaux O, Sogni P, Mallet V, Oudjit A, Pol S, Legmann P. Chronic liver disease: systemic and splanchnic venous flow mapping with optimized cine phase-contrast MR imaging validated in a phantom model and prospectively evaluated in patients. Radiology. 2011;261(1):144–55.CrossRefPubMedGoogle Scholar
  30. 30.
    Pelc LR, Pelc NJ, Rayhill SC, Castro LJ, Glover GH, Herfkens RJ, Miller DC, Jeffrey RB. Arterial and venous-blood flow – noninvasive quantitation with MR imaging. Radiology. 1992;185(3):809–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Hara AK, Burkart DJ, Johnson CD, Felmlee JP, Ehman RL, Ilstrup DM, Harmsen WS. Variability of consecutive in vivo MR flow measurements in the main portal vein. Am J Roentgenol. 1996;166(6):1311–5.CrossRefGoogle Scholar
  32. 32.
    Wilson DJ, Ridgway JP, Evans JA, Robinson P. Measurement of hepatic arterial flow using phase contrast magnetic resonance imaging. Phys Med Biol. 2009;54(19):N439–49.CrossRefPubMedGoogle Scholar
  33. 33.
    Bax L, Bakker CJG, Klein WM, Blanken N, Beutler JJ, Mali WPTRM. Renal blood flow measurements with use of phase-contrast magnetic resonance imaging: normal values and reproducibility. J Vasc Interv Radiol. 2005;16(6):807–14.CrossRefPubMedGoogle Scholar
  34. 34.
    de Haan MW, Kouwenhoven M, Kessels AGH, van Engelshoven JMA. Renal artery blood flow: quantification with breath-hold or respiratory triggered phase-contrast MR imaging. Eur Radiol. 2000;10(7):1133–7.CrossRefPubMedGoogle Scholar
  35. 35.
    de Haan MW, van Engelshoven JMA, Houben AJHM, Kaandorp DW, Kessels AGH, Kroon AA, de Leeuw PW. Phase-contrast magnetic resonance flow quantification in renal arteries – comparison with (133)Xenon washout measurements. Hypertension. 2003;41(1):114–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Burkart DJ, Johnson CD, Reading CC, Ehman RL. MR measurements of mesenteric venous flow – prospective evaluation in healthy-volunteers and patients with suspected chronic mesenteric ischemia. Radiology. 1995;194(3):801–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Li KCP, Whitney WS, Mcdonnell CH, Fredrickson JO, Pelc NJ, Dalman RL, Jeffrey RB. Chronic mesenteric ischemia – evaluation with phase-contrast cine MR-imaging. Radiology. 1994;190(1):175–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Yzet T, Bouzerar R, Baledent O, Renard C, Lumbala DM, Nguyen-Khac E, Regimbeau JM, Deramond H, Meyer ME. Dynamic measurements of total hepatic blood flow with Phase Contrast MRI. Eur J Radiol. 2010;73(1):119–24.CrossRefPubMedGoogle Scholar
  39. 39.
    Yzet T, Bouzerar R, Allart JD, Demuynck F, Legallais C, Robert B, Deramond H, Meyer ME, Baledent O. Hepatic vascular flow measurements by phase contrast MRI and Doppler echography: a comparative and reproducibility study. J Magn Reson Imaging. 2010;31(3):579–88.CrossRefPubMedGoogle Scholar
  40. 40.
    Bosch J, Groszmann RJ. Measurement of azygos venous blood flow by a continuous thermal dilution technique: an index of blood flow through gastroesophageal collaterals in cirrhosis. Hepatology. 1984;4(3):424–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Bosch J, Mastai R, Kravetz D, Bruix J, Rigau J, Rodes J. Measurement of azygos venous blood flow in the evaluation of portal hypertension in patients with cirrhosis. Clinical and haemodynamic correlations in 100 patients. J Hepatol. 1985;1(2):125–39.CrossRefPubMedGoogle Scholar
  42. 42.
    Salama ZA, Kassem AM, Giovannini M, Hunter MS. Endoscopic ultrasonographic study of the azygos vein in patients with varices. Endoscopy. 1997;29(8):748–50.CrossRefPubMedGoogle Scholar
  43. 43.
    Faigel DO, Rosen HR, Sasaki A, Flora K, Benner K. EUS in cirrhotic patients with and without prior variceal hemorrhage in comparison with noncirrhotic control subjects. Gastrointest Endosc. 2000;52(4):455–62.CrossRefPubMedGoogle Scholar
  44. 44.
    Lomas DJ, Hayball MP, Jones DP, Sims C, Allison MED, Alexander GJM. Noninvasive measurement of Azygos venous-blood flow using magnetic-resonance. J Hepatol. 1995;22(4):399–403.CrossRefPubMedGoogle Scholar
  45. 45.
    Debatin JF, Zahner B, Meyenberger C, Romanowski B, Schopke W, Marincek B, Fuchs WA. Azygos blood flow: phase contrast quantitation in volunteers and patients with portal hypertension pre- and postintrahepatic shunt placement. Hepatology. 1996;24(5):1109–15.CrossRefPubMedGoogle Scholar
  46. 46.
    Gouya H, Grabar S, Vignaux O, Saade A, Pol S, Legmann P, Sogni P. Portal hypertension in patients with cirrhosis: indirect assessment of hepatic venous pressure gradient by measuring azygos flow with 2D-cine phase-contrast magnetic resonance imaging. Eur Radiol. 2016;26(7):1981–90.CrossRefPubMedGoogle Scholar
  47. 47.
    Palaniyappan N, Cox E, Bradley C, Scott R, Austin A, O'Neill R, Ramjas G, Travis S, White H, Singh R, Thurley P, Guha IN, Francis S, Aithal GP. Non-invasive assessment of portal hypertension using quantitative magnetic resonance imaging. J Hepatol. 2016;65(6):1131–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chouhan MD, Mookerjee RP, Bainbridge A, Punwani S, Jones H, Davies N, Walker-Samuel S, Patch D, Jalan R, Halligan S, Lythgoe MF, Taylor SA. Caval subtraction 2D phase-contrast MRI to measure total liver and hepatic arterial blood flow: proof-of-principle, correlation with portal hypertension severity and validation in patients with chronic liver disease. Investig Radiol. 2017;52(3):170–6.Google Scholar
  49. 49.
    Cox EF, Smith JK, Chowdhury AH, Lobo DN, Francis ST, Simpson J. Temporal assessment of pancreatic blood flow and perfusion following secretin stimulation using noninvasive MRI. J Magn Reson Imaging. 2015;42(5):1233–40.CrossRefPubMedGoogle Scholar
  50. 50.
    Berzigotti A, Seijo S, Arena U, Abraldes JG, Vizzutti F, Garcia-Pagan JC, Pinzani M, Bosch J. Elastography, spleen size, and platelet count identify portal hypertension in patients with compensated cirrhosis. Gastroenterology. 2013;144(1):102–111.e1.CrossRefPubMedGoogle Scholar
  51. 51.
    de Franchis R, Fac BV. Expanding consensus in portal hypertension report of the Baveno VI consensus workshop: stratifying risk and individualizing care for portal hypertension. J Hepatol. 2015;63(3):743–52.CrossRefPubMedGoogle Scholar
  52. 52.
    Moitinho E, Escorsell N, Bandi JC, Salmeron JM, Garcia-Pagan JC, Rodis J, Bosch J. Prognostic value of early measurements of portal pressure in acute variceal bleeding. Gastroenterology. 1999;117(3):626–31.CrossRefPubMedGoogle Scholar
  53. 53.
    Merkel C, Bolognesi M, Bellon S, Zuin R, Noventa F, Finucci G, Sacerdoti D, Angeli P, Gatta A. Prognostic usefulness of hepatic vein catheterization in patients with cirrhosis and esophageal-varices. Gastroenterology. 1992;102(3):973–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Garcia-Tsao G, Bosch J. Current concepts: management of varices and variceal hemorrhage in cirrhosis. N Engl J Med. 2010;362(9):823–32.CrossRefPubMedGoogle Scholar
  55. 55.
    Sinagra E, Perricone G, D'Amico M, Tine F, D’Amico G. Systematic review with meta-analysis: the haemodynamic effects of carvedilol compared with propranolol for portal hypertension in cirrhosis. Aliment Pharmacol Ther. 2014;39(6):557–68.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Naaventhan Palaniyappan
    • 1
  • Indra Neil Guha
    • 1
  • Guruprasad Padur Aithal
    • 1
  1. 1.Nottingham Digestive Diseases CentreUniversity of Nottingham, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of NottinghamNottinghamUK

Personalised recommendations