Skip to main content

Coagulation Perturbations After Severe Injury: Translational Approaches and the State of the Science

  • Chapter
  • First Online:
Damage Control in Trauma Care

Abstract

Despite evidence of acute traumatic coagulopathy hiding in plain site for decades, coagulopathy after trauma was thought to result from the iatrogenic effects of otherwise well-intentioned resuscitation. The luminary shock research of the late 1960s and early 1970s combined with advances in blood banking result in a cold red blood cell and crystalloid-based resuscitation practice which prevailed for decades. Indeed, the initial groundbreaking work on hemorrhagic shock revealed that shocked patients required both oxygen carrying capacity and blood flow (pressure) for survival [1–3]. While much of this early work was done in the era of whole blood, this was largely forgotten as a result of the contemporaneously timed move away from whole blood transfusion toward component therapy. Beginning in the mid-1970s, the blood banking community realized that they could component separate whole blood thereby taking a unit of whole blood and converting it to components; one unit of packed red blood cells (PRBCs) one unit of fresh frozen plasma (FFP) some part of a unit of platelets with the remainder becoming cryoprecipitate consisting of concentrated factors and fibrinogen. The white blood cells were spun or filtered off variably during the process. These changes which were initially made for resource allocation and financial reasons were solidified in the early 1980s by the emergence of HIV and concerns about the safety of the blood supply. Hence the new understanding from research on shock that our patients need oxygen carrying capacity and flow and left with components in the blood bank and crystalloid on the shelf our resuscitation practices evolved toward the delivery of large volumes of cold packed red blood cells and many liters of salt water. It was for decades common to resuscitate severely injured patients with multiple units of packed red blood cells and many liters of crystalloid with little to no attention paid to coagulation measures or any need for plasma or platelets. These resuscitation practices resulted in the creation of or exacerbation of iatrogenic coagulopathy characterized by dilution, hypothermia, and acidosis described below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carrico CJ, Coln CD, Lightfoot SA, Allsman A, Shires GT. Extracellular fluid volume replacement in hemorrhagic shock. Surg Forum. 1963;14:10–2.

    PubMed  CAS  Google Scholar 

  2. Shires T, Carrico CJ. Current status of the shock problem. Curr Probl Surg. 1966;3:3–67.

    Article  Google Scholar 

  3. Shires T, Coln D, Carrico J, Lightfoot S. Fluid therapy in hemorrhagic shock. Arch Surg. 1964;88:688–93.

    Article  CAS  PubMed  Google Scholar 

  4. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54(6):1127–30.

    Article  PubMed  Google Scholar 

  5. MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy predicts mortality in trauma. J Trauma. 2003;55(1):39–44.

    Article  PubMed  Google Scholar 

  6. Brohi K, Cohen MJ, Davenport RA. Acute coagulopathy of trauma: mechanism, identification and effect. Curr Opin Crit Care. 2007;13(6):680–5.

    Article  PubMed  Google Scholar 

  7. Cohen MJ, Brohi K, Ganter MT, Manley GT, Mackersie RC, Pittet JF. Early coagulopathy after traumatic brain injury: the role of hypoperfusion and the protein C pathway. J Trauma. 2007;63(6):1254–61; discussion 61–2

    Article  CAS  PubMed  Google Scholar 

  8. Cohen MJ, Kutcher M, Redick B, Nelson M, Call M, Knudson MM, et al. Clinical and mechanistic drivers of acute traumatic coagulopathy. J Trauma Acute Care Surg. 2013;75(1 Suppl 1):S40–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kutcher ME, Ferguson AR, Cohen MJ. A principal component analysis of coagulation after trauma. J Trauma Acute Care Surg. 2013;74(5):1223–9; discussion 9–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kutcher ME, Howard BM, Sperry JL, Hubbard AE, Decker AL, Cuschieri J, et al. Evolving beyond the vicious triad: differential mediation of traumatic coagulopathy by injury, shock, and resuscitation. J Trauma Acute Care Surg. 2015;78(3):516–23.

    Article  CAS  PubMed  Google Scholar 

  11. Esmon CT. The protein C pathway. Chest. 2003;124(3 Suppl):26S–32S.

    Article  CAS  PubMed  Google Scholar 

  12. Griffin JH, Zlokovic BV, Mosnier LO. Activated protein C: biased for translation. Blood. 2015;125(19):2898–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cohen MJ, Call M, Nelson M, Calfee CS, Esmon CT, Brohi K, et al. Critical role of activated protein C in early coagulopathy and later organ failure, infection and death in trauma patients. Ann Surg. 2012;255(2):379–85.

    Article  PubMed  Google Scholar 

  14. Howard BM, Miyazawa BY, Dong W, Cedron WJ, Vilardi RF, Ruf W, et al. The tissue factor pathway mediates both activation of coagulation and coagulopathy after injury. J Trauma Acute Care Surg. 2015;79(6):1009–13; discussion 1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johansson PI, Bochsen L, Stensballe J, Secher NH. Transfusion packages for massively bleeding patients: the effect on clot formation and stability as evaluated by Thrombelastograph (TEG). Transfus Apher Sci. 2008;39(1):3–8.

    Article  PubMed  Google Scholar 

  16. Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77(6):811–7; discussion 7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moore HB, Moore EE, Liras IN, Gonzalez E, Harvin JA, Holcomb JB, et al. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. J Am Coll Surg. 2016;222(4):347–55.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moore EE, Moore HB, Gonzalez E, Chapman MP, Hansen KC, Sauaia A, et al. Postinjury fibrinolysis shutdown: rationale for selective tranexamic acid. J Trauma Acute Care Surg. 2015;78(6 Suppl 1):S65–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moore HB, Moore EE, Lawson PJ, Gonzalez E, Fragoso M, Morton AP, et al. Fibrinolysis shutdown phenotype masks changes in rodent coagulation in tissue injury versus hemorrhagic shock. Surgery. 2015;158(2):386–92.

    Article  PubMed  Google Scholar 

  20. Menezes AA, Vilardi RF, Arkin AP, Cohen MJ. Targeted clinical control of trauma patient coagulation through a thrombin dynamics model. Sci Transl Med. 2017;9(371)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Jay Cohen M.D., F.A.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cohen, M.J. (2018). Coagulation Perturbations After Severe Injury: Translational Approaches and the State of the Science. In: Duchesne, J., Inaba, K., Khan, M. (eds) Damage Control in Trauma Care. Springer, Cham. https://doi.org/10.1007/978-3-319-72607-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72607-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72606-9

  • Online ISBN: 978-3-319-72607-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics