A No-History, Low Latency Photonic Quantum Random Bit Generator for Use in a Loophole Free Bell Tests and General Applications

Part of the Quantum Science and Technology book series (QST)


Random numbers are essential for our modern information-based society. Unlike frequently used pseudo-random generators, physical random number generators do not depend on deterministic algorithms but rather on a physical process to provide true randomness. In this work we present a conceptually simple optical quantum random number generator that features special characteristics necessary for application in a loophole-free Bell inequality test, namely: (1) very short latency between the request for a random bit and time when the bit is generated; (2) all physical processes relevant to the bit production happen after the bit request signal; and (3) high efficiency of producing a bit upon a request (100% by design). This generator is characterized by further desirable characteristics: ability of high bit generation rate, possibility to use a low detection-efficiency photon detector, a high ratio of number of bits per detected photon (≈2) and simplicity of the bit generating process. Generated sequences of random bits pass NIST STS test without further postprocessing.


  1. 1.
    Figotin, A., et al. (2004). inventors; The Regents of the University of California, asignee; A random number generator based on spontaneous alpha-decay. PCT patent application WO0038037A1.Google Scholar
  2. 2.
    Stipčević, M., & Rogina, B. M. (2007). Quantum random number generator based on photonic emission in semiconductors. Review of Scientific Instruments, 78(045104), 1–7.Google Scholar
  3. 3.
    Rarity, J. G., Owens, P. C. M., & Tapster, P. R. (1994). Quantum random-number generator and key sharing. Journal of Modern Optics, 41, 2435–2444.CrossRefGoogle Scholar
  4. 4.
    Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., & Zbinden, H. (2000). Optical quantum random number generator. Journal of Modern Optics, 47, 595–598.Google Scholar
  5. 5.
    Fürst, H., et al. (2010). High speed optical quantum random number generation. Optics Express, 18, 13029–13037.CrossRefGoogle Scholar
  6. 6.
    Stipčević, M. (2004). Fast nondeterministic random bit generator based on weakly correlated physical events. Review of Scientific Instruments, 75, 4442–4449.CrossRefGoogle Scholar
  7. 7.
    Scarani, V., et al. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81, 1301–1350.CrossRefGoogle Scholar
  8. 8.
    Merali, Z. (2011). Quantum mechanics braces for the ultimate test. Science, 331, 1380–1382.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., & Zeilinger, A. (1998). Violation of Bell’s inequality under strict Einstein locality conditions. Physical Review Letters, 81, 5039–5043.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Scheidl, T., et al. (2010). Violation of local realism with freedom of choice. Proceedings of the National Academy of Sciences of the United States of America, 107, 19708–19713.CrossRefGoogle Scholar
  11. 11.
    Giustina, M., et al. (2013). Bell violation using entangled photons without the fair-sampling assumption. Nature, 497, 227–239.CrossRefGoogle Scholar
  12. 12.
    Christensen, B. G., et al. (2013). Detection-loophole-free test of quantum nonlocality, and applications. Physical Review Letters, 111, 130406.CrossRefGoogle Scholar
  13. 13.
    Stipčević, M., & Ursin, R. (2015). An on-demand optical quantum random number generator with in-future action and ultra-fast response. Scientific Reports, 5(10214), 1–8.Google Scholar
  14. 14.
    Rukhin, A., et al. (2010). NIST Special Publication 800-22rev1a. April 2010, Accessed 01 Feb 2012.
  15. 15.
    Frauchiger, D., Renner, R., & Troyer, M. (2013). True randomness from realistic quantum devices. SPIE Security + Defense Conference Proceedings (Vol. 8899). arXiv:1311.4547 (quant-ph).
  16. 16.
    Stipčević, M., Christensen, B. G., Kwiat, P. G., & Gauthier, D. J. (2017). An advanced active quenching circuit for ultra-fast quantum cryptography. Optics Express, 25, 21861–21876.CrossRefGoogle Scholar
  17. 17.
    Giudice, A. C., Ghioni, M., & Cova S. (2003). A process and deep level evaluation tool: afterpulsing in avalanche junctions. In Proceedings of European Solid-State Device Research 2003 (ESSDERC 03) (pp. 347–350). 16–18 Sept 2003.Google Scholar
  18. 18.
    Humer, G., Peev, M., Schaeff, C., Ramelow, S., Stipčević, M., Ursin, R. (2015) A simple and robust method for estimating afterpulsing in single photon detectors. Journal of Lightwave Technology, 33, 3098–3107.CrossRefGoogle Scholar
  19. 19.
    Henry, C. (1982). Theory of the line width of semiconductor lasers. IEEE Journal of Quantum Electronics, 18, 259–264.CrossRefGoogle Scholar
  20. 20.
    Henry, C. (1986). Phase noise in semiconductor lasers. Journal of Lightwave Technology, 4, 298–311.CrossRefGoogle Scholar
  21. 21.
    Lydersen, L., et al. (2011). Superlinear threshold detectors in quantum cryptography. Physical Review A, 84, 032320.CrossRefGoogle Scholar
  22. 22.
    Pesquera, L., Revuelta, J., Valle A., & Rodriguez, M.A. (1997). Theoretical calculation of turn-on delay time statistics of lasers under PRWM. In M. Osinski, & W. W. Chow (Eds.), Physics and Simulation of Optoelectronic Devices V (SPIE, San Jose, 1997). (Proceedings of SPIE Vol. 2994).Google Scholar
  23. 23.
    Stipčević M., & Gauthier D. J. (2013). Precise monte carlo simulation of single-photon detectors. In M. A. Itzler, J. C. Campbell (Eds.),: Advanced Photon Counting Techniques VII (SPIE, Baltimore, 2013). (Proceedings of SPIE Vol. 8727).Google Scholar
  24. 24.
    Knuth D. (1997). The art of computer programming Volume 2: Seminumerical Algorithms (3rd ed., pp. 70-71). Reading: Addison-Wesley.Google Scholar
  25. 25.
    Walker, J. (2003). ENT-A Pseudorandom Number Sequence Test Program. Access: 05 Feb 2014.
  26. 26.
    Von Neumann J. (1963). Various techniques for use in connection with random digits (Von Neumann Collected Works, Vol 5, pp. 768–770). New York: Macmillan.Google Scholar
  27. 27.
    Davies, R. (2002). Exclusive OR (XOR) and hardware random number generators. 28 Feb 2002, Accessed 05 Feb 2014.
  28. 28.
    Stipčević, M., & Bowers, J. (2015). Spatio-temporal optical random number generator. Optics Express, 23, 11619–11631.CrossRefGoogle Scholar
  29. 29.
    Stipčević, M. (2009). Active quenching circuit for single-photon detection with Geiger mode avalanche photodiodes. Applied Optics, 48, 1705–1714.CrossRefGoogle Scholar
  30. 30.
    Stipčević M. (2013). Quantum random flip-flop based on random photon emitter and its applications, arXiv:1308.5719. (quant-ph).
  31. 31.
    Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., & Zeilinger, A. (2000). A fast and compact quantum random number generator. Review of Scientific Instruments, 71, 1675–1680.CrossRefGoogle Scholar
  32. 32.
    Dynes, J. F., Yuan, Z. L., Sharpe, A. W., & Shields, A. J. (2008). A high speed, postprocessing free, quantum random number generator. Applied Physics Letters, 93, 0311109.CrossRefGoogle Scholar
  33. 33.
    Yuan, Z. L., et al. (2014). Robust random number generation using steady-state emission of gain-switched laser diodes. Applied Physics Letters, 104, 261112.CrossRefGoogle Scholar
  34. 34.
    Abellán, C., et al. (2014). Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Optics Express, 22, 1645–1654.CrossRefGoogle Scholar
  35. 35.
    Sanguinetti, B., Martin, A., Zbinden, H., & Gisin, N. (2014). Quantum Random Number Generation on a Mobile Phone. Physical Review X, 4, 031056.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Photonics and Quantum Optics Unit of the Center of Excellence for Advanced Materials and Sensing DevicesRuđer Bošković InstituteZagrebCroatia
  2. 2.Institute for Quantum Optics and Quantum Information, Austrian Academy of SciencesViennaAustria

Personalised recommendations