Epigenetics and Early Life Adversity: Current Evidence and Considerations for Epigenetic Studies in the Context of Child Maltreatment

Part of the Child Maltreatment Solutions Network book series (CMSN)


The association between early childhood adversity and later risk of mental disorders is well established. The mechanisms by which signals from the early environment are transmitted to the neonate and shape mental health are beginning to be understood. Chemically stable, epigenetic modifications, such as DNA methylation, have emerged as putative mechanisms for the enduring effects of the early social environment on neural development and function. In this chapter, we review data from both preclinical models and clinical studies of early adversity and epigenetic mechanisms. Specifically, we examine the mechanism of DNA methylation, which may mediate the lasting effects of early adversity on later mental health.


Epigenetics DNA methylation Child maltreatment Developmental origins Translational science 


  1. Alisch, R. S., Barwick, B. G., Chopra, P., Myrick, L. K., Satten, G. A., Conneely, K. N., & Warren, S. T. (2012). Age-associated DNA methylation in pediatric populations. Genome Research, 22, 623–632. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beach, S. R. H., Brody, G. H., Todorov, A. A., Gunter, T. D., & Philibert, R. A. (2010). Methylation at SLC6A4 is linked to family history of child abuse: An examination of the Iowa adoptee sample. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153B, 710–713.CrossRefGoogle Scholar
  3. Belsky, J., & Pluess, M. (2013). Genetic moderation of early child-care effects on social functioning across childhood: A developmental analysis. Child Development, 84, 1209–1225. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berko, E. R., Suzuki, M., Beren, F., Lemetre, C., Alaimo, C. M., Calder, R. B., … Greally, J. M. (2014). Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder. PLoS Genetics, 10, e1004402. [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berry, D., Deater-Deckard, K., McCartney, K., Wang, Z., & Petrill, S. A. (2013). Gene-environment interaction between dopamine receptor D4 7-repeat polymorphism and early maternal sensitivity predicts inattention trajectories across middle childhood. Development and Psychopathology, 25, 291–306. S095457941200106X [pii].CrossRefGoogle Scholar
  6. Bird, A. P. (1986). CpG-rich islands and the function of DNA methylation. Nature, 321, 209–213.CrossRefGoogle Scholar
  7. Bird, A. P. (2002). DNA methylation patterns and epigenetic memory. Genes and Development, 16, 6–21.CrossRefGoogle Scholar
  8. Bonder, M. J., Luijk, R., Zhernakova, D. V., Moed, M., Deelen, P., Vermaat, M., … Heijmans, B. T. (2017). Disease variants alter transcription factor levels and methylation of their binding sites. Nature Genetics, 49, 131–138. CrossRefPubMedGoogle Scholar
  9. Booth, M. J., Branco, M. R., Ficz, G., Oxley, D., Krueger, F., Reik, W., & Balasubramanian, S. (2012). Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science, 336, 934–937. CrossRefPubMedGoogle Scholar
  10. Branco, M. R., Ficz, G., & Reik, W. (2012). Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nature Reviews Genetics, 13, 7–13.CrossRefGoogle Scholar
  11. Brandeis, M., Frank, D., Keshet, I., Siegfried, Z., Mendelsohn, M., Names, A., … Cedar, H. (1994). Spl elements protect a CpG island from de novo methylation. Nature, 371, 435–438.CrossRefGoogle Scholar
  12. Brody, G. H., Yu, T., Chen, E., Beach, S. R., & Miller, G. E. (2015). Family-centered prevention ameliorates the longitudinal association between risky family processes and epigenetic aging. Journal of Child Psychology and Psychiatry, 57, 566. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Byrne, E. M., Carrillo-Roa, T., Henders, A. K., Bowdler, L., McRae, A. F., Heath, A. C., … Wray, N. R. (2013). Monozygotic twins affected with major depressive disorder have greater variance in methylation than their unaffected co-twin. Translational Psychiatry, 3, e269. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Caldji, C., Diorio, J., & Meaney, M. J. (2003). Variations in maternal care alter GABAA receptor subunit expression in brain regions associated with fear. Neuropsychopharmacology, 28, 1950–1959.CrossRefGoogle Scholar
  15. Caldji, C., Francis, D., Sharma, S., Plotsky, P. M., & Meaney, M. J. (2000). The effects of early rearing environment on the development of GABAA and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat. Neuropsychopharmacology, 22, 219–229.CrossRefGoogle Scholar
  16. Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., & Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceedings of the National Academy of Sciences of the United States of America, 95, 5335–5340.CrossRefGoogle Scholar
  17. Caspi, A., Harrington, H., Milne, B., Amell, J. W., Theodore, R. F., & Moffitt, T. E. (2003). Children’s behavioral styles at age 3 are linked to their adult personality traits at age 26. Journal of Personality, 71, 495–513.CrossRefGoogle Scholar
  18. Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., … Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851–854. CrossRefPubMedGoogle Scholar
  19. Caspi, A., & Moffitt, T. E. (2006). Gene-environment interactions in psychiatry: Joining forces with neuroscience. Nature Reviews Neuroscience, 7, 583.CrossRefGoogle Scholar
  20. Caspi, A., Moffitt, T. E., Cannon, M., McClay, J., Murray, R., Harrington, H., … Craig, I. W. (2005). Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: Longitudinal evidence of a gene X environment interaction. Biological Psychiatry, 57, 1117–1127. S0006–3223(05)00103–4 [pii]. CrossRefPubMedGoogle Scholar
  21. Champagne, F. A. (2008). Epigenetic mechanisms and the transgenerational effects of maternal care. Frontiers in Neuroendocrinology, 29, 386–397. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Champagne, F. A., Francis, D. D., Mar, A., & Meaney, M. J. (2003). Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiology and Behavior, 79, 359–371. CrossRefPubMedGoogle Scholar
  23. Chen, B. H., Marioni, R. E., Colicino, E., Peters, M. J., Ward-Caviness, C. K., Tsai, P. C., … Horvath, S. (2016). DNA methylation-based measures of biological age: Meta-analysis predicting time to death. Aging, 8, 1844–1865. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chouliaras, L., Mastroeni, D., Delvaux, E., Grover, A., Kenis, G., Hof, P. R., … van den Hove, D. L. A. (2013). Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiology of Aging, 34, 2091. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cicchetti, D., Hetzel, S., Rogosch, F. A., Handley, E. D., & Toth, S. L. (2016). An investigation of child maltreatment and epigenetic mechanisms of mental and physical health risk. Development and Psychopathology, 28, 1305–1317.CrossRefGoogle Scholar
  26. Davies, M. N., Volta, M., Pidsley, R., Lunnon, K., Dixit, A., Lovestone, S., … Mill, J. (2012). Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biology, 13, R43. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Deaton, A. M., & Bird, A. (2011). CpG islands and the regulation of transcription. Genes and Development, 25, 1010–1022. 25/10/1010 [pii]. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Deaton, A. M., Webb, S., Kerr, A. R. W., Illingworth, R. S., Guy, J., Andrews, R., & Bird, A. (2011). Cell type–specific DNA methylation at intragenic CpG islands in the immune system. Genome Research, 21, 1074–1086. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dempster, E. L., Pidsley, R., Schalkwyk, L. C., Owens, S., Georgiades, A., Kane, F., … Mill, J. (2011). Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Human Molecular Genetics, 20, 4786–4796. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Docherty, S., Davis, O., Haworth, C., Plomin, R., D'Souza, U., & Mill, J. (2012). A genetic association study of DNA methylation levels in the DRD4 gene region finds associations with nearby SNPs. Behavioral and Brain Functions, 8, 31.CrossRefGoogle Scholar
  31. Dumais, A., Lesage, A. D., Lalovic, A., Seguin, M., Tousignant, M., Chawky, N., & Turecki, G. (2005). Is violent method of suicide a behavioral marker of lifetime aggression? American Journal of Psychiatry, 162, 1375–1378. CrossRefPubMedGoogle Scholar
  32. Edgar, R. D., Jones, M. J., Meaney, M. J., Turecki, G., & Kobor, M. S. (2017). BECon: A tool for interpreting DNA methylation findings from blood in the context of brain. bioRxiv.
  33. Edgar, R. D., Jones, M. J., Robinson, W. P., & Kobor, M. S. (2017). An empirically driven data reduction method on the human 450K methylation array to remove tissue specific non-variable CpGs. Clinical Epigenetics, 9, 11. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Esposito, E. A., Jones, M. J., Doom, J. R., MacIsaac, J. L., Gunnar, M. R., & Kobor, M. S. (2016). Differential DNA methylation in peripheral blood mononuclear cells in adolescents exposed to significant early but not later childhood adversity. Development and Psychopathology, 28, 1385–1399. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Essex, M. J., Boyce, W. T., Hertzman, C., Lam, L. L., Armstrong, J. M., Neumann, S. M., & Kobor, M. S. (2013). Epigenetic vestiges of early developmental adversity: Childhood stress exposure and DNA methylation in adolescence. Child Development, 84, 58–75. CrossRefPubMedGoogle Scholar
  36. Fan, G., Martinowich, K., Chin, M. H., He, F., Fouse, S. D., Hutnick, L., … Sun, Y. E. (2005). DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development, 132, 3345–3356. CrossRefPubMedGoogle Scholar
  37. Farre, P., Jones, M. J., Meaney, M. J., Emberly, E., Turecki, G., & Kobor, M. S. (2015). Concordant and discordant DNA methylation signatures of aging in human blood and brain. Epigenetics & Chromatin, 8, 19. CrossRefGoogle Scholar
  38. Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., … Esteller, M. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102, 10604–10609. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Francis, D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286, 1155–1158. 7973 [pii].CrossRefGoogle Scholar
  40. Gavin, D. P., Sharma, R. P., Chase, K. A., Matrisciano, F., Dong, E., & Guidotti, A. (2012). Growth arrest and DNA-damage-inducible, Beta (GADD45b)-mediated DNA Demethylation in major psychosis. Neuropsychopharmacology, 37, 531–542.CrossRefGoogle Scholar
  41. Gertz, J., Varley, K. E., Reddy, T. E., Bowling, K. M., Pauli, F., Parker, S. L., … Myers, R. M. (2011). Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLoS Genetics, 7, e1002228. [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gordon, L., Joo, J. E., Powell, J. E., Ollikainen, M., Novakovic, B., Li, X., … Saffery, R. (2012). Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Research, 22, 1395–1406. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hackett, J. A., Sengupta, R., Zylicz, J. J., Murakami, K., Lee, C., Down, T. A., & Surani, M. A. (2013). Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science, 339, 448–452. CrossRefPubMedGoogle Scholar
  44. Hannon, E., Dempster, E., Viana, J., Burrage, J., Smith, A. R., Macdonald, R., … Mill, J. (2016). An integrated genetic-epigenetic analysis of schizophrenia: Evidence for co-localization of genetic associations and differential DNA methylation. Genome Biology, 17, 176. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hansen, K. D., Timp, W., Bravo, H. C., Sabunciyan, S., Langmead, B., McDonald, O. G., … Feinberg, A. P. (2011). Increased methylation variation in epigenetic domains across cancer types. Nature Genetics, 43, 768–775. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hecker, T., Radtke, K. M., Hermenau, K., Papassotiropoulos, A., & Elbert, T. (2016). Associations among child abuse, mental health, and epigenetic modifications in the proopiomelanocortin gene (POMC): A study with children in Tanzania. Development and Psychopathology, 28, 1401–1412.CrossRefGoogle Scholar
  47. Heim, C., Newport, D., Jeffrey, B., Robert, M., Andrew, H., & Nemeroff, C. B. (2001). Altered pituitary-adrenal axis responses to provocative challenge tests in adult survivors of childhood abuse. American Journal of Psychiatry, 158, 575–581. CrossRefPubMedGoogle Scholar
  48. Hellstrom, I. C., Dhir, S. K., Diorio, J. C., & Meaney, M. J. (2012). Maternal licking regulates hippocampal glucocorticoid receptor transcription through a thyroid hormone-serotonin-NGFI-A signalling cascade. Philosophical Transactions of the Royal Society of London: Bioloical Sciences, 367, 2495–2510. rstb.2012.0223 [pii]. CrossRefGoogle Scholar
  49. Herb, B. R., Wolschin, F., Hansen, K. D., Aryee, M. J., Langmead, B., Irizarry, R., … Feinberg, A. P. (2012). Reversible switching between epigenetic states in honeybee behavioral subcastes. Nature Neuroscience, 15, 1371–1373.—supplementary-information.CrossRefGoogle Scholar
  50. Heyn, H., Li, N., Ferreira, H. J., Moran, S., Pisano, D. G., Gomez, A., … Esteller, M. (2012). Distinct DNA methylomes of newborns and centenarians. Proceedings of the National Academy of Sciences of the United States of America, 109, 10522–10527. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Holliday, R. (1989). DNA methylation and epigenetic mechanisms. Cell Biophysics, 15, 15–20.CrossRefGoogle Scholar
  52. Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14, R115. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Horvath, S., Zhang, Y., Langfelder, P., Kahn, R. S., Boks, M. P. M., van Eijk, K., … Ophoff, R. A. (2012). Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biology, 13, R97.CrossRefGoogle Scholar
  54. Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., … Feinberg, A. P. (2009). The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics, 41, 178–186. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Isagawa, K., Wang, D. F., Kobayashi, T., Itoh, T., & Maeda, R. (2011). Development of a MEMS DC electric current sensor applicable to two-wire electrical appliance cord. Paper presented at the Nano/Micro Engineered and Molecular Systems (NEMS), 2011 IEEE International Conference.Google Scholar
  56. Jin, S.-G., Wu, X., Li, A. X., & Pfeifer, G. P. (2011). Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Research, 39, 5015–5024. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kaminsky, Z. A., Tang, T., Wang, S.-C., Ptak, C., Oh, G. H. T., Wong, A. H. C., … Petronis, A. (2009). DNA methylation profiles in monozygotic and dizygotic twins. Nature Genetics, 41, 240–245. CrossRefGoogle Scholar
  58. Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., … Bradley, B. (2013). Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nature Neuroscience, 16, 33–41.CrossRefGoogle Scholar
  59. Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: The mark and its mediators. Trends in Biochemical Sciences, 31, 89–97.CrossRefGoogle Scholar
  60. Kriaucionis, S., & Heintz, N. (2009). The nuclear DNA base 5-Hydroxymethylcytosine is present in purkinje neurons and the brain. Science, 324, 929–930. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kumsta, R., Marzi, S. J., Viana, J., Dempster, E. L., Crawford, B., Rutter, M., … Sonuga-Barke, E. J. (2016). Severe psychosocial deprivation in early childhood is associated with increased DNA methylation across a region spanning the transcription start site of CYP2E1. Translational Psychiatry, 6, e830. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Labonté, B., Suderman, M., Maussion, G., Navaro, L., Yerko, V., Mahar, I., … Meaney, M. J. (2012). Genome-wide epigenetic regulation by early-life trauma. Archives of General Psychiatry, 69, 722–731.CrossRefGoogle Scholar
  63. Lam, L. L., Emberly, E., Fraser, H. B., Neumann, S. M., Chen, E., Miller, G. E., & Kobor, M. S. (2012). Factors underlying variable DNA methylation in a human community cohort. Proceedings of the National Academy of Sciences of the United States of America, 109(Suppl 2), 17253–17260. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lappalainen, T., & Greally, J. M. (2017). Associating cellular epigenetic models with human phenotypes. Nature Reviews Genetics, 18, 441–451.CrossRefGoogle Scholar
  65. Levine, S. (1994). The ontogeny of the hypothalamic-pituitary-adrenal axis. The influence of maternal factors. Annals of the New York Academy of Sciences, 746, 275–288. CrossRefPubMedGoogle Scholar
  66. Lienert, F., Wirbelauer, C., Som, I., Dean, A., Mohn, F., & Schubeler, D. (2011). Identification of genetic elements that autonomously determine DNA methylation states. Nature Genetics, 43, 1091–1097. ng.946 [pii].CrossRefPubMedGoogle Scholar
  67. Lister, R., Mukamel, E. A., Nery, J. R., Urich, M., Puddifoot, C. A., Johnson, N. D., … Ecker, J. R. (2013). Global epigenomic reconfiguration during mammalian brain development. Science, 341, 1237905. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., … Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659–1662.CrossRefGoogle Scholar
  69. Liu, Y., Aryee, M. J., Padyukov, L., Fallin, M. D., Hesselberg, E., Runarsson, A., … Feinberg, A. P. (2013). Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nature Biotechnology, 31, 142–147. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Lu, A. T., Hannon, E., Levine, M. E., Hao, K., Crimmins, E. M., Lunnon, K., … Horvath, S. (2016). Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum. Nature Communications, 7, 10561.CrossRefGoogle Scholar
  71. Ma, D. K., Jang, M. H., Guo, J. U., Kitabatake, Y., Chang, M. L., Pow-Anpongkul, N., … Song, H. (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 323(5917), 1074–1077. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Macleod, D., Charlton, J., Mullins, J., & Bird, A. P. (1994). Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes & Development, 8, 2282–2292.CrossRefGoogle Scholar
  73. Marioni, R. E., Shah, S., McRae, A. F., Ritchie, S. J., Muniz-Terrera, G., Harris, S. E., … Deary, I. J. (2015). The epigenetic clock is correlated with physical and cognitive fitness in the Lothian birth cohort 1936. International Journal of Epidemiology, 44, 1388–1396. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Martino, D., Loke, Y. J., Gordon, L., Ollikainen, M., Cruickshank, M. N., Saffery, R., & Craig, J. M. (2013). Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genome Biology, 14, R42. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Martino, D. J., Tulic, M. K., Gordon, L., Hodder, M., Richman, T. R., Metcalfe, J., … Saffery, R. (2011). Evidence for age-related and individual-specific changes in DNA methylation profile of mononuclear cells during early immune development in humans. Epigenetics, 6, 1085–1094. CrossRefPubMedGoogle Scholar
  76. Martinowich, K., Hattori, D., Wu, H., Fouse, S., He, F., Hu, Y., … Sun, Y. E. (2003). DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science, 302, 890–893. CrossRefPubMedGoogle Scholar
  77. Maunakea, A. K., Nagarajan, R. P., Bilenky, M., Ballinger, T. J., Souza, C., Fouse, S. D., … Costello, J. F. (2010). Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 466, 253–257.—supplementary-information.CrossRefGoogle Scholar
  78. Maze, I., Noh, K.-M., & Allis, C. D. (2013). Histone regulation in the CNS: Basic principles of epigenetic plasticity. Neuropsychopharmacology, 38, 3–22.CrossRefGoogle Scholar
  79. McGoron, L., Gleason, M. M., Smyke, A. T., Drury, S. S., Nelson, C. A., Gregas, M. C., … Zeanah, C. H. (2012). Recovering from early deprivation: Attachment mediates effects of caregiving on psychopathology. Journal of the American Academy of Child and Adolescent Psychiatry, 51, 683–693. CrossRefPubMedPubMedCentralGoogle Scholar
  80. McGowan, P. O., Sasaki, A., D’Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., … Meaney, M. J. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342–348.CrossRefGoogle Scholar
  81. McLaughlin, K. A., Sheridan, M. A., Winter, W., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2014). Widespread reductions in cortical thickness following severe early-life deprivation: A neurodevelopmental pathway to attention-deficit/hyperactivity disorder. Biological Psychiatry, 76(8), 629–638. S0006–3223(13)00769–5 [pii].CrossRefPubMedGoogle Scholar
  82. Meaney, M. J. (2010). Epigenetics and the biological definition of gene x environment interactions. Child Development, 81, 41–79. CDEV1381 [pii].CrossRefGoogle Scholar
  83. Meaney, M. J., Diorio, J., Francis, D., Weaver, S., Yau, J., Chapman, K., & Seckl, J. R. (2000). Postnatal handling increases the expression of camp-inducible transcription factors in the rat hippocampus: The effects of thyroid hormones and serotonin. The Journal of Neuroscience, 20, 3926–3935.CrossRefGoogle Scholar
  84. Mehta, D., Klengel, T., Conneely, K. N., Smith, A. K., Altmann, A., Pace, T. W., … Binder, E. B. (2013). Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proceedings of the National Academy of Sciences of the United States of America, 110, 8302–8307. CrossRefPubMedPubMedCentralGoogle Scholar
  85. Mellén, M., Ayata, P., Dewell, S., Kriaucionis, S., & Heintz, N. (2012). MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell, 151(7), 1417–1430. CrossRefPubMedPubMedCentralGoogle Scholar
  86. Menard, J. L., Champagne, D. L., & Meaney, M. J. P. (2004). Variations of maternal care differentially influence ‘fear’ reactivity and regional patterns of cFos immunoreactivity in response to the shock-probe burying test. Neuroscience, 129, 297–308. CrossRefPubMedGoogle Scholar
  87. Mueller, B. R., & Bale, T. L. (2008). Sex-specific programming of offspring emotionality after stress early in pregnancy. Journal of Neuroscience, 28, 9055–9065. CrossRefPubMedPubMedCentralGoogle Scholar
  88. Murgatroyd, C., Patchev, A. V., Wu, Y., Micale, V., Bockmuhl, Y., Fischer, D., … Spengler, D. (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neuroscience, 12, 1559–1566. CrossRefGoogle Scholar
  89. Nanni, V., Uher, R., & Danese, A. (2012). Childhood maltreatment predicts unfavorable course of illness and treatment outcome in depression: A meta-analysis. American Journal of Psychiatry, 169, 141–151.CrossRefGoogle Scholar
  90. Naumova, O. Y., Hein, S., Suderman, M., Barbot, B., Lee, M., Raefski, A., … Grigorenko, E. L. (2016). Epigenetic patterns modulate the connection between developmental dynamics of parenting and offspring psychosocial adjustment. Child Development, 87, 98–110.CrossRefGoogle Scholar
  91. Naumova, O. Y., Lee, M., Koposov, R., Szyf, M., Dozier, M., & Grigorenko, E. L. (2012). Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Development and Psychopathology, 24, 143–155. S0954579411000605 [pii].CrossRefPubMedGoogle Scholar
  92. Nelson, C. A., Zeanah, C. H., Fox, N. A., Marshall, P. J., Smyke, A. T., & Guthrie, D. (2007). Cognitive recovery in socially deprived young children: The Bucharest early intervention project. Science, 318, 1937–1940. CrossRefPubMedGoogle Scholar
  93. Nelson, E. D., Kavalali, E. T., & Monteggia, L. M. (2008). Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation. The Journal of Neuroscience, 28, 395–406. CrossRefPubMedGoogle Scholar
  94. Non, A. L., Hollister, B. M., Humphreys, K. L., Childebayeva, A., Esteves, K., Zeanah, C. H., … Drury, S. S. (2016). DNA methylation at stress-related genes is associated with exposure to early life institutionalization. American Journal of Physical Anthropology, 161, 84–93. CrossRefPubMedPubMedCentralGoogle Scholar
  95. O’Connor, T. G., Rutter, M., Beckett, C., Keaveney, L., & Kreppner, J. M. (2000). The effects of global severe privation on cognitive competence: Extension and longitudinal follow-up. Child Development, 71, 376–390. CrossRefPubMedGoogle Scholar
  96. Papavassiliou, P., York, T. P., Gursoy, N., Hill, G., Nicely, L. V., Sundaram, U., … Jackson-Cook, C. (2009). The phenotype of persons having mosaicism for trisomy 21/Down syndrome reflects the percentage of trisomic cells present in different tissues. American Journal of Medical Genetics, 149A, 573–583. CrossRefPubMedGoogle Scholar
  97. Perroud, N., Rutembesa, E., Paoloni-Giacobino, A., Mutabaruka, J., Mutesa, L., Stenz, L., … Karege, F. (2014). The Tutsi genocide and transgenerational transmission of maternal stress: Epigenetics and biology of the HPA axis. Biological Psychiatry, 15, 334–345.Google Scholar
  98. Pidsley, R., Zotenko, E., Peters, T. J., Lawrence, M. G., Risbridger, G. P., Molloy, P., … Clark, S. J. (2016). Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biology, 17, 208.CrossRefGoogle Scholar
  99. Provençal, N., Suderman, M. J., Guillemin, C., Massart, R., Ruggiero, A., Wang, D., … Szyf, M. (2012). The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. Journal of Neuroscience, 32, 15626–15642. CrossRefPubMedPubMedCentralGoogle Scholar
  100. Radtke, K. M., Ruf, M., Gunter, H. M., Dohrmann, K., Schauer, M., Meyer, A., & Elbert, T. (2011). Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Translational Psychiatry, 1, e21. CrossRefGoogle Scholar
  101. Rakyan, V. K., Down, T. A., Thorne, N. P., Flicek, P., Kulesha, E., Gräf, S., … Beck, S. (2008). An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Research, 18, 1518–1529. CrossRefPubMedPubMedCentralGoogle Scholar
  102. Razin, A., & Cedar, H. (1993). DNA methylation and embryogenesis. In DNA methylation (pp. 343–357). Berlin: Springer.CrossRefGoogle Scholar
  103. Razin, A., & Riggs, A. D. (1980). DNA methylation and gene function. Science, 210, 604–610.CrossRefGoogle Scholar
  104. Reddy, T. E., Gertz, J., Pauli, F., Kucera, K. S., Varley, K. E., Newberry, K. M., … Song, L. (2012). Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. Genome Research, 22, 860–869.CrossRefGoogle Scholar
  105. Risch, N., Herrell, R., Lehner, T., Liang, K.-Y., Eaves, L., Hoh, J., … Merikangas, K. R. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis. Journal of the American Medical Association, 301, 2462–2471.CrossRefGoogle Scholar
  106. Rutter, M., Kumsta, R., Schlotz, W., & Sonuga-Barke, E. (2012). Longitudinal studies using a “natural experiment” design: The case of adoptees from romanian institutions. Journal of the American Academy of Child and Adolescent Psychiatry, 51, 762–770. CrossRefPubMedGoogle Scholar
  107. Rutter, M., Thapar, A., & Pickles, A. (2009). Gene-environment interactions: Biologically valid pathway or artifact? Archives of General Psychiatry, 66, 1287–1289. 66/12/1287 [pii].CrossRefPubMedGoogle Scholar
  108. Ruzov, A., Tsenkina, Y., Serio, A., Dudnakova, T., Fletcher, J., Bai, Y., … De Sousa, P. (2011). Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Research, 21, 1332–1342. CrossRefGoogle Scholar
  109. Sabunciyan, S., Aryee, M. J., Irizarry, R. A., Rongione, M., Webster, M. J., Kaufman, W. E., … Potash, J. B. (2012). Genome-wide DNA methylation scan in major depressive disorder. PLoS One, 7, e34451. [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  110. Schanberg, S. M., Evoniuk, G., & Kuhn, C. M. (1984). Tactile and nutritional aspects of maternal care: specific regulators of neuroendocrine function and cellular development. Proceedings of the Society for Experimental Biology and Medicine, 175, 135–146.CrossRefGoogle Scholar
  111. Schubeler, D. (2012). Molecular biology. Epigenetic islands in a genetic ocean. Science, 338, 756–757. 338/6108/756 [pii].CrossRefPubMedGoogle Scholar
  112. Shenker, N., & Flanagan, J. M. (2012). Intragenic DNA methylation: Implications of this epigenetic mechanism for cancer research. British Journal of Cancer, 106, 248–253.CrossRefGoogle Scholar
  113. Sheridan, M. A., Fox, N. A., Zeanah, C. H., McLaughlin, K. A., & Nelson, C. A. (2012). Variation in neural development as a result of exposure to institutionalization early in childhood. Proceedings of the National Academy of Sciences of the United States of America, 109, 12927–12932. CrossRefPubMedPubMedCentralGoogle Scholar
  114. Skene, P. J., & Henikoff, S. (2013). Histone variants in pluripotency and disease. Development, 140, 2513–2524. CrossRefPubMedGoogle Scholar
  115. Smith, A. K., Conneely, K. N., Kilaru, V., Mercer, K. B., Weiss, T. E., Bradley, B., … Ressler, K. J. (2011). Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156, 700–708. CrossRefGoogle Scholar
  116. Smith, A. K., Kilaru, V., Klengel, T., Mercer, K. B., Bradley, B., Conneely, K. N., … Binder, E. B. (2015). DNA extracted from saliva for methylation studies of psychiatric traits: Evidence tissue specificity and relatedness to brain. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 168B, 36–44. CrossRefGoogle Scholar
  117. Sonuga-Barke, E. J. S., Kennedy, M., Kumsta, R., Knights, N., Golm, D., Rutter, M., … Kreppner, J. (2017). Child-to-adult neurodevelopmental and mental health trajectories after early life deprivation: The young adult follow-up of the longitudinal English and Romanian adoptees study. Lancet, 389, 1539–1548. CrossRefPubMedGoogle Scholar
  118. Stadler, M. B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Scholer, A., … Schubeler, D. (2011). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480, 490–495. CrossRefPubMedGoogle Scholar
  119. Szulwach, K. E., Li, X., Li, Y., Song, C-X., Wu, H., Dai, Q., … Jin, P. (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neuroscience, 14, 1607–1616.—supplementary-information.CrossRefGoogle Scholar
  120. Szyf, M., Weaver, I. C. G., Champagne, F. A., Diorio, J., & Meaney, M. J. (2005). Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Frontiers in Neuroendocrinology, 26, 139–162.CrossRefGoogle Scholar
  121. Teh, A. L., Pan, H., Lin, X., Lim, Y., Ives, P., Chinari, P. K., … Meaney, M. J. (2016). Comparison of methyl-capture sequencing vs. Infinium 450K methylation array for methylome analysis in clinical samples. Epigenetics, 11, 36–48.CrossRefGoogle Scholar
  122. Toki, S., Morinobu, S., Imanaka, A., Yamamoto, S., Yamawaki, S., & Honma, K.-I. (2007). Importance of early lighting conditions in maternal care by dam as well as anxiety and memory later in life of offspring. European Journal of Neuroscience, 25, 815–829. CrossRefPubMedGoogle Scholar
  123. Trickett, P. K., Noll, J. G., Susman, E. J., Shenk, C. E., & Putnam, F. W. (2010). Attenuation of cortisol across development for victims of sexual abuse. Development and Psychopathology, 22, 165–175. CrossRefPubMedPubMedCentralGoogle Scholar
  124. Trickett, P. K., Noll, J. G., & Putnam, F. W. (2011). The impact of sexual abuse on female development: Lessons from a multigenerational, longitudinal research study. Development and Psychopathology, 23(02), 453–476. CrossRefPubMedPubMedCentralGoogle Scholar
  125. Turecki, G., & Meaney, M. J. (2014). Effects of the social environment and stress on glucocorticoid receptor gene methylation: A systematic review. Biological Psychiatry, 79, 87. CrossRefPubMedPubMedCentralGoogle Scholar
  126. Turner, B. M. (2001). Chromatin and gene regulation: Mechanisms in epigenetics. Cambridge, MA: Blackwell Science.CrossRefGoogle Scholar
  127. Turner, J. D., & Muller, C. P. (2005). Structure of the glucocorticoid receptor (NR3C1) gene 5′ untranslated region: Identification, and tissue distribution of multiple new human exon 1. Journal of Molecular Endocrinology, 35, 283–292. CrossRefPubMedGoogle Scholar
  128. Tyrka, A. R., Price, L. H., Marsit, C., Walters, O. C., & Carpenter, L. L. (2012). Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: Preliminary findings in healthy adults. PLoS One, 7, e30148. [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  129. Tyrka, A. R., Ridout, K. K., & Parade, S. H. (2016). Childhood adversity and epigenetic regulation of glucocorticoid signaling genes: Associations in children and adults. Development and Psychopathology, 28, 1319–1331.CrossRefGoogle Scholar
  130. Tyrka, A. R., Ridout, K. K., Parade, S. H., Paquette, A., Marsit, C. J., & Seifer, R. (2015). Childhood maltreatment and methylation of FK506 binding protein 5 gene (FKBP5). Development and Psychopathology, 27, 1637–1645.CrossRefGoogle Scholar
  131. Ursini, G., Bollati, V., Fazio, L., Porcelli, A., Iacovelli, L., Catalani, A., … Bertolino, A. (2011). Stress-related methylation of the Catechol-O-Methyltransferase Val158 allele predicts human prefrontal cognition and activity. Journal of Neuroscience, 31, 6692–6698. CrossRefPubMedGoogle Scholar
  132. Varley, K. E., Gertz, J., Bowling, K. M., Parker, S. L., Reddy, T. E., Pauli-Behn, F., … Myers, R. M. (2013). Dynamic DNA methylation across diverse human cell lines and tissues. Genome Research, 23, 555–567. CrossRefPubMedPubMedCentralGoogle Scholar
  133. Vijayendran, M., Beach, S., Plume, J. M., Brody, G., & Philibert, R. (2012). Effects of genotype and child abuse on DNA methylation and gene expression at the serotonin transporter. Frontiers in Psychiatry, 3, 55. CrossRefPubMedPubMedCentralGoogle Scholar
  134. Wang, T., Pan, Q., Lin, L., Szulwach, K. E., Song, C. X., He, C., … Li, X. (2012). Genome-wide DNA hydroxymethylation changes are associated with neurodevelopmental genes in the developing human cerebellum. Human Molecular Genetics, 21, 5500–5510. CrossRefPubMedPubMedCentralGoogle Scholar
  135. Weaver, I. C., D’Alessio, A. C., Brown, S. E., Hellstrom, I. C., Dymov, S., Sharma, S., … Meaney, M. J. (2007). The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: Altering epigenetic marks by immediate-early genes. Journal of Neuroscience, 27, 1756–1768. CrossRefPubMedPubMedCentralGoogle Scholar
  136. Weaver, I. C. G., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., … Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847–854. CrossRefGoogle Scholar
  137. Widom, C. S., DuMont, K., & Czaja, S. J. (2007). A prospective investigation of major depressive disorder and comorbidity in abused and neglected children grown up. Archives of General Psychiatry, 64, 49–56.CrossRefGoogle Scholar
  138. Wong, C. C. Y., Meaburn, E. L., Ronald, A., Price, T. S., Jeffries, A. R., Schalkwyk, L. C., … Mill, J. (2013). Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Molecular Psychiatry, 19, 495. CrossRefPubMedPubMedCentralGoogle Scholar
  139. Xiao, S., Xie, D., Cao, X., Yu, P., Xing, X., Chen, C. C., … Zhong, S. (2012). Comparative epigenomic annotation of regulatory DNA. Cell, 149, 1381–1392. S0092–8674(12)00574–0 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  140. Yang, B.-Z., Zhang, H., Ge, W., Weder, N., Douglas-Palumberi, H., Perepletchikova, F., … Kaufman, J. (2013). Child abuse and epigenetic mechanisms of disease risk. American Journal of Preventive Medicine, 44, 101–107. CrossRefPubMedPubMedCentralGoogle Scholar
  141. Yehuda, R., Daskalakis, N. P., Bierer, L. M., Bader, H. N., Klengel, T., Holsboer, F., & Binder, E. B. (2016). Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biological Psychiatry, 80, 372–380.CrossRefGoogle Scholar
  142. Yehuda, R., Flory, J. D., Bierer, L. M., Henn-Haase, C., Lehrner, A., Desarnaud, F., … Meaney, M. J. (2014). Lower methylation of glucocorticoid receptor gene promoter 1 in peripheral blood of veterans with posttraumatic stress disorder. Biological Psychiatry, 77, 356. CrossRefPubMedGoogle Scholar
  143. Yehuda, R., Flory, J. D., Bierer, L. M., Henn-Haase, C., Lehrner, A., Desarnaud, F., … Meaney, M. J. (2015). Lower methylation of glucocorticoid receptor gene promoter 1 F in peripheral blood of veterans with posttraumatic stress disorder. Biological Psychiatry, 77, 356–364.CrossRefGoogle Scholar
  144. Zannas, A. S., Arloth, J., Carrillo-Roa, T., Iurato, S., Roh, S., Ressler, K. J., … Mehta, D. (2015). Lifetime stress accelerates epigenetic aging in an urban, African American cohort: Relevance of glucocorticoid signaling. Genome Biology, 16, 266. CrossRefPubMedPubMedCentralGoogle Scholar
  145. Zhang, D., Cheng, L., Badner, J. A., Chen, C., Chen, Q., Luo, W., … Liu, C. (2010). Genetic control of individual differences in gene-specific methylation in human brain. American Journal of Human Genetics, 86, 411–419. S0002–9297(10)00087-X [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  146. Zhang, T. Y., Hellstrom, I. C., Bagot, R. C., Wen, X., Diorio, J., & Meaney, M. J. (2010). Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus. The Journal of Neuroscience, 30, 13130–13137. CrossRefPubMedGoogle Scholar
  147. Ziller, M. J., Gu, H., Muller, F., Donaghey, J., Tsai, L. T., Kohlbacher, O., … Meissner, A. (2013). Charting a dynamic DNA methylation landscape of the human genome. Nature, 500, 477–481. CrossRefPubMedPubMedCentralGoogle Scholar
  148. Zouk, H., Tousignant, M., Seguin, M., Lesage, A., & Turecki, G. (2006). Characterization of impulsivity in suicide completers: Clinical, behavioral and psychosocial dimensions. Journal of Affective Disorders, 92, 195–204.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Douglas Mental Health University InstituteMontrealCanada
  2. 2.Department of PsychiatryMcGill UniversityMontrealCanada

Personalised recommendations