Advertisement

Constitutive Inference and the Problem of a Complete Variation of Factors

  • Jens Harbecke
Chapter
Part of the European Studies in Philosophy of Science book series (ESPS, volume 9)

Abstract

This paper aims to solve a potential problem for the methodology of constitutive inference offered by Harbecke (Stud Hist Philos Sci C: Stud Hist Philos Biol Biomed Sci 54:10–19, 2015b). The methodology is ultimately based on Mill’s “method of difference”, which requires a complete variation of factors in a given frame. In constitutive contexts, such a complete variation is often impossible. The offered solution utilizes the notion of a “mechanism slice”. In a first step, an example of a currently accepted explanation in neuroscience is reconstructed, which serves as a reference point of the subsequent discussion. The regularity theory of mechanistic constitution and the corresponding methodology of constitutive inference are then introduced. Eventually, it is argued that the proposed solution accommodates well all schematic situations in which the impossibility of varying all test factors could be expected either to lead to false inferences or to preclude the establishment of correct constitutive claims.

Keywords

Mechanistic explanation Constitutive inference Constitutive explanation Scientific models Regularity theory of constitution 

References

  1. Baumgartner, M., and G. Graßhoff. 2004. Kausalität und kausales Schliessen: eine Einführung mit interaktiven Übungen. Bern: Bern Studies in the History and Philosophy of Science.Google Scholar
  2. Bechtel, W., and A. Abrahamsen. 2005. Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences 36(2): 421–441.CrossRefGoogle Scholar
  3. Bechtel, W., and R. Richardson. 1993. Discovering complexity: Decomposition and localization as scientific research strategies. New York: Princeton University Press.Google Scholar
  4. Bickle, J. 2003. Philosophy and neuroscience: A ruthlessly reductive account. Dordrecht: Kluwer.CrossRefGoogle Scholar
  5. Bliss, T., and G. Collingridge. 1993. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361(6407): 31–39.CrossRefGoogle Scholar
  6. Bliss, T., and T. Lømo. 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology 232(2): 331–356.CrossRefGoogle Scholar
  7. Bourtchouladze, R., T. Abel, N. Berman, R. Gordon, K. Lapidus, and E.R. Kandel. 1998. Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learning & Memory 5(4): 365–374.Google Scholar
  8. Churchland, P.S., and T.J. Sejnowski. 1992. The computational brain. Cambridge: MIT Press.Google Scholar
  9. Couch, M. 2011. Mechanisms and constitutive relevance. Synthese 183(3): 375–388.CrossRefGoogle Scholar
  10. Craver, C. 2002. Interlevel experiments and multilevel mechanisms in the neuroscience of memory. Philosophy of Science 69(3): 83–97.CrossRefGoogle Scholar
  11. Craver, C. 2007. Explaining the brain. New York: Oxford University Press.CrossRefGoogle Scholar
  12. Craver, C., and L. Darden. 2001. Discovering mechanisms in neurobiology. In Theory and method in the neurosciences, ed. P. Machamer, R. Grush, and P. McLaughlin, 112–137. Pittsburgh: University of Pittsburgh Press.Google Scholar
  13. Davis, S., S. Butcher, and R. Morris. 1992. The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. Journal of Neuroscience 12(1): 21–34.Google Scholar
  14. Frey, U., S. Frey, F. Schollmeier, and M. Krug. 1996. Influence of actinomycin D, a RNA synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in vitro. The Journal of Physiology 490(Pt 3): 703.CrossRefGoogle Scholar
  15. Graßhoff, G., and M. May. 1995. Methodische analyse wissenschaftlichen entdeckens. Kognitionswissenschaft 5: 51–67.Google Scholar
  16. Grover, L., and T. Teyler. 1992. N-methyl-D-aspartate receptor-independent long-term potentiation in area CA1 of rat hippocampus: Input-specific induction and preclusion in a non-tetanized pathway. Neuroscience 49(1): 7–11.CrossRefGoogle Scholar
  17. Harbecke, J. 2010. Mechanistic constitution in neurobiological explanations. International Studies in the Philosophy of Science 24(3): 267–285.CrossRefGoogle Scholar
  18. Harbecke, J. 2013. Regularity theories of mechanistic constitution in comparison. In GAP 8 Was d?rfen wir glauben? Was sollen wir tun?, ed. M. Hoeltje, T. Spitzley, and W. Spohn, 126–134. Duisburg-Essen: DuEPublico.Google Scholar
  19. Harbecke, J. 2014. The role of supervenience and constitution in neuroscientific research. Synthese 191(5): 725–743.CrossRefGoogle Scholar
  20. Harbecke, J. 2015a. Regularity constitution and the location of levels. Foundations of Science 20(3), 323–338.CrossRefGoogle Scholar
  21. Harbecke, J. 2015b. The regularity theory of mechanistic constitution and a methodology for constitutive inference. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 54: 10–19.CrossRefGoogle Scholar
  22. Harris, E., A. Ganong, and C. Cotman. 1984. Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Research 323(1): 132–137.CrossRefGoogle Scholar
  23. Kimble, D. (1963). The effects of bilateral hippocampal lesions in rats. Journal of Comparative and Physiological Psychology 56(2), 273.CrossRefGoogle Scholar
  24. Lewis, D. 1973. Causation. The Journal of Philosophy 70(17): 556–567.CrossRefGoogle Scholar
  25. Lewis, D. 1986. On the plurality of worlds, vol. 322. Oxford: Basil Blackwell.Google Scholar
  26. Lømo, T. 2003. The discovery of long-term potentiation. Philosophical Transactions of the Royal Society. London B. Biological Science 358: 617–620.CrossRefGoogle Scholar
  27. Machamer, P., L. Darden, and C. Craver. 2000. Thinking about mechanisms. Philosophy of Science 67(1): 1–25.CrossRefGoogle Scholar
  28. Mackie, J. 1974. The cement of the Universe. Oxford: Clarendon Press.Google Scholar
  29. Malenka, R., J. Kauer, D. Perkel, M. Mauk, P. Kelly, R. Nicoll, and M. Waxham. 1989. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 340(6234): 554–557.CrossRefGoogle Scholar
  30. May, M. 1999. Kausales Schliessen. Eine Untersuchung ?ber kausale Erkl?rungen und Theorienbildung. Ph.D. thesis, University of Hamburg, Germany.Google Scholar
  31. Mellor, D.H. 1977. Natural kinds. British Journal for the Philosophy of Science 28(4): 299–312.CrossRefGoogle Scholar
  32. Mill, J.S. 1882/1843. A system of logic: Ratiocinative and inductive, Book III, 8th ed. London: Harper and Brothers.Google Scholar
  33. Morris, R. 1984. Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods 11(1): 47–60.CrossRefGoogle Scholar
  34. Morris, R., P. Garrud, J. Rawlins, and J. O’Keefe. 1982. Place navigation impaired in rats with hippocampal lesions. Nature 297(5868): 681–683.CrossRefGoogle Scholar
  35. Morris, R., E. Anderson, G. Lynch, and M. Baudry. 1986. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319: 774–776.CrossRefGoogle Scholar
  36. Spohn, W. 2006. Causation: An alternative. The British Journal for the Philosophy of Science 57(1): 93–119.CrossRefGoogle Scholar
  37. Toni, N., P.-A. Buchs, I. Nikonenko, C. Bron, and D. Muller. 1999. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402(6760): 421–425.CrossRefGoogle Scholar
  38. Varzi, A. 2009. Mereology. In Stanford Encyclopedia of Philosophy, ed. E.N. Zalta (Summer 2009 ed.). http://plato.stanford.edu/entries/mereology/.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Theoretical Philosophy and Philosophy of the Social SciencesWitten/Herdecke UniversityWittenGermany

Personalised recommendations