Advertisement

Are There Good Arguments Against Scientific Realism?

  • Paul Hoyningen-Huene
Chapter
Part of the European Studies in Philosophy of Science book series (ESPS, volume 9)

Abstract

I will first discuss a peculiarity of the realism-antirealism debate. Some authors defending antirealist positions in a philosophical discussion seem to be inconsistent with what they do when treating scientific subjects. In the latter situation, they behave as realists. This tension can be dissolved by distinguishing different discourses belonging to different levels of philosophical radicality. Depending on the respective level, certain presuppositions are either granted or questioned. I will then turn to a discussion of the miracle argument by discussing a simple example of curve fitting. In the example, multiple use-novel predictions are possible without indicating the truth of the fitting curve. Because this situation has similarities with real scientific cases, it sheds serious doubt upon the miracle argument. Next, I discuss the strategy of selective realism, especially its additional crucial component, the continuity argument. The continuity of some X in a series of theories, with X being responsible for the theories’ use-novel predictions, is taken to be a reliable indicator for the reality of X. However, the continuity of X could as well be due to the similarity of the theories in the series with an empirically very successful theory embodying X, without X being real. Thus, the two main arguments for scientific realism show severe weaknesses.

Keywords

Miracle argument Use-novel predictions Continuity argument Selective realism Structural realism 

References

  1. Abbott, B.P., et al. 2016. Observation of gravitational waves from a binary black hole merger. Physical Review Letters 116 (6): 061102.CrossRefGoogle Scholar
  2. Alai, M. 2014. Novel predictions and the no miracle argument. Erkenntnis 79 (2): 297–326.CrossRefGoogle Scholar
  3. Chakravartty, Anjan. 2014. Scientific realism. In The Stanford encyclopedia of philosophy, ed. E.N. Zalta. Spring 2014 ed. http://plato.stanford.edu/archives/spr2014/entries/scientific-realism/
  4. Dawkins, R. 1995. River out of Eden: A Darwinian view of life. New York: Basic Books.Google Scholar
  5. Einstein, A. 1916, Juni 29. Näherungsweise Integration der Feldgleichungen der Gravitation. Königlich Preußische Akademie der Wissenschaften (Berlin). Sitzungsberichte, 688–696.Google Scholar
  6. ———. 1918, February 21. Über Gravitationswellen. Königlich Preußische Akademie der Wissenschaften (Berlin). Sitzungsberichte, 154–167.Google Scholar
  7. French, S. 2014. The structure of the world: Metaphysics and representation. Oxford: Oxford University Press.CrossRefGoogle Scholar
  8. Giere, R.N. 2006. Scientific perspectivism. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  9. Hawking, S.W. 1971. Gravitational radiation from colliding black holes. Physical Review Letters 26 (21): 1344–1346.CrossRefGoogle Scholar
  10. Hawking, S.W. 1996. Classical theory. In The nature of space and time, ed. S.W. Hawking and R. Penrose. Princeton: Princeton University Press.Google Scholar
  11. Hawking, S.W., and L. Mlodinow. 2010. The grand design. London: Bantam.Google Scholar
  12. Hawking, S.W., and R. Penrose. 1996. The nature of space and time. Princeton: Princeton University Press.Google Scholar
  13. Heitler, W., and F. London. 1927. Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik 44: 455–472.CrossRefGoogle Scholar
  14. Hitchcock, C.H., and E. Sober. 2004. Prediction versus accommodation and the risk of overfitting. The British Journal for the Philosophy of Science 55 (1): 1–34.CrossRefGoogle Scholar
  15. Howson, C. 2013. Exhuming the no-miracles argument. Analysis 73 (2): 205–211.CrossRefGoogle Scholar
  16. Hoyningen-Huene, P. 2011. Reconsidering the miracle argument on the supposition of transient underdetermination. Synthese 180 (2): 173–187.CrossRefGoogle Scholar
  17. ———. 2013. The ultimate argument against convergent realism and structural realism: The impasse objection. In EPSA11 perspectives and foundational problems in philosophy of science, ed. V. Karakostas and D. Dieks, 131–139. Cham: Springer.CrossRefGoogle Scholar
  18. Husserl, E. 1967 [1922]. Ideas: General introduction to pure phenomenology. Trans. W.R.G. Gibson. New York: Humanities Press.Google Scholar
  19. Lee, W.-Y. 2014. Should the no-mircacle argument add to scientific evidence. Philosophia 42 (4): 999–1004.CrossRefGoogle Scholar
  20. Lyons, T.D. 2003. Explaining the success of a scientific theory. Philosophy of Science 70: 891–901.CrossRefGoogle Scholar
  21. ———. 2015. Scientific Realism. In The Oxford handbook of philosophy of science, ed. P. Humphreys. New York: Oxford University Press.Google Scholar
  22. ———. 2016. Structural realism versus deployment realism: A comparative evaluation. Studies in History and Philosophy of Science Part A 59: 95–105.CrossRefGoogle Scholar
  23. Magnus, P.D., and C. Callender. 2004. Realist ennui and the base rate fallacy. Philosophy of Science 71 (3): 320–338.CrossRefGoogle Scholar
  24. Mayo, D.G. 1991. Novel evidence and severe tests. Philosoophy of Science 58 (4): 523–552.CrossRefGoogle Scholar
  25. Menke, C. 2014. Does the miracle argument embody a base rate fallacy? Studies in History and Philosophy of Science 45 (3): 103–108.CrossRefGoogle Scholar
  26. Musgrave, A. 1988. The ultimate argument for scientific realism. In Relativism and realism in science, ed. R. Nola. Dordrecht: Kluwer Academic.Google Scholar
  27. Planck, M. 1933. Wege zur physikalischen Erkenntnis: Reden und Vorträge. Leipzig: S. Hirzel.Google Scholar
  28. Psillos, S. 2006. Thinking about the ultimate argument for realism. In Rationality and reality: Conversations with Alan Musgrave, ed. C. Cheyne and J. Worrall, 133–156. Berlin: Springer.CrossRefGoogle Scholar
  29. Putnam, H. 1975. What is mathematical truth? In Mathematics, matter and method. Philosophical papers, vol. 1, 60–78. Cambridge: Cambridge University Press.Google Scholar
  30. Rowbottom, D.P. 2011. What’s at the bottom of scientific realism? Studies in History and Philosophy of Science Part A 42 (4): 625–628.CrossRefGoogle Scholar
  31. Saatsi, J.T., and P. Vickers. 2011. Miraculous success? Inconsistency and untruth in Kirchhoff’s diffraction theorie. British Journal for the Philosophy of Science 62 (1): 29–46.CrossRefGoogle Scholar
  32. Sankey, H. 1994. The incommensurability thesis. Aldershot: Avebury.Google Scholar
  33. Schindler, S. 2008. Use-novel predictions and Mendeleev’s periodic table: Response to Scerri and Worrall (2001). Studies in History and Philosophy of Science Part A 39 (2): 265–269.CrossRefGoogle Scholar
  34. van Fraassen, B.C. 1980. The scientific image. Oxford: Clarendon.CrossRefGoogle Scholar
  35. Votsis, I. 2011. Structural realism: Continuity and its limits. In Scientific structuralism, ed. P. Bokulich and A. Bokulich, 105–117. Dordrecht: Springer. Available at: http://philsci-archive.pitt.edu/5233/1/VotsisStructuralRealismContinuityanditsLimits.pdf
  36. Worrall, J. 1989. Fresnel, poisson, and the white spot: The role of successful predictions in the acceptance of scientific theories. In The use of experiment. Studies in the natural sciences, ed. D. Gooding, T. Pinch, and S. Schaffer, 135–157. Cambridge: Cambridge University Press.Google Scholar
  37. ———. 1996 [1989]. Structural realism: The best of both worlds?. In The philosophy of science, ed. D. Papineau, 139–165. Oxford: Oxford university press (originally in Dialectica 43, 99–124 (1989)).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of PhilosophyLeibniz University of HanoverHanoverGermany
  2. 2.Department of EconomicsUniversity of ZurichZurichSwitzerland

Personalised recommendations