Skip to main content

Abstract

In the previous chapter, the fundamentals of TFTs were discussed with emphasis on device operation and working principles. The current chapter is related to the integration of these devices. First, different setups of TFTs are presented, highlighting the advantages and disadvantages of each structure. Secondly, the description of the integration process is divided considering each integration step or layer for the achievement of a complete transistor or device. Particular focus is given to material properties and characteristics as well as to integration techniques used in this work; nevertheless, a brief discussion concerning other methods and materials is also exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this study, deionized water using reverse osmosis with minimum resistivity of 18 M Ω was used in all steps, and from now on the term water refers to deionized water. If for a particular reason another water type (e.g., distilled or non-purified) is used, the term water is clarified.

  2. 2.

    Polyimide (PI) is commercially known as Kapton®;.

  3. 3.

    Standard 100 mm Si wafer with more than 300 nm thermally grown oxide.

  4. 4.

    Borosilicate glass wafers with 100 mm cross section and 0.5 mm thickness from Plan Optic AG.

  5. 5.

    The development of the fixing system and the adaptation of the photolithographic technique on flexible substrate were performed in cooperation with Thorsten Meyers at the Paderborn University. The process was published in [VMWH16b].

  6. 6.

    The etching processes were preferably conducted at room temperature. This was done aiming at a better and smoother later transfer of the process to polymeric substrates.

  7. 7.

    The photoresist Clariant AZ 5214E can be employed using its positive or negative tone character depending on the processing performed as described in [Mic00].

  8. 8.

    The results concerning the quality of the deposition of the water-based ZnO nanoparticle dispersion were partially published in [VMH17].

  9. 9.

    The high-k nanocomposite surface character modification from hydrophobic to hydrophilic is ascribed to the variation on the surface roughness and on the amount of OH- present at the surface. The origin of such effects is still under research, and more information can be found in [MVB+17a].

References

  1. 3M: Datasheet: CG3700. Maplewood, MN (1997)

    Google Scholar 

  2. Ante, F., Kalblein, D., Zaki, T., Zschieschang, U., Takimiya, K., Ikeda, M., Sekitani, T., Someya, T., Burghartz, J.N., Kern, K., Klauk, H.: Contact resistance and megahertz operation of aggressively scaled organic transistors. Small (Weinheim an der Bergstrasse, Germany) 8(1), 73–79 (2012). http://dx.doi.org/10.1002/smll.201101677

  3. Bénard, P., Auffrédic, J.P., Louër, D.: A study of the thermal decomposition of ammine zinc hydroxide nitrates. Thermochim. Acta 232(1), 65–76 (1994). http://dx.doi.org/10.1016/0040-6031(94)80046-4

  4. Bao, Z., Locklin, J.J.: Optical Science and Engineering, vol. 128. Organic Field-Effect Transistors. CRC, Boca Raton, FL (2007). ISBN 0-8493-8080-4

    Google Scholar 

  5. Benson, N., Melzer, C., Schmechel, R., Seggern, H.v.: Electronic states at the dielectric/semiconductor interface in organic field effect transistors. Phys. Status Solidi A 205(3), 475–487 (2008). http://dx.doi.org/10.1002/pssa.200723421

  6. Barquinha, P., Pereira, L., Gonçalves, G., Martins, R., Fortunato, E.: Toward high-performance amorphous GIZO TFTs. J. Electrochem. Soc. 156(3), H161 (2009). http://dx.doi.org/10.1149/1.3049819

  7. Bhuiyan, M.S., Paranthaman, M., Salama, K.: Solution-derived textured oxide thin films — a review. Supercond. Sci. Technol. 19(2), R1–R21 (2006). http://dx.doi.org/10.1088/0953-2048/19/2/R01

  8. Busch, C., Schierning, G., Theissmann, R., Schmechel, R.: Influence of annealing atmospheres and synthetic air treatment on solution processed zinc oxide thin film transistors. J. Appl. Phys. 112(3), 034506 (2012). http://dx.doi.org/10.1063/1.4742976

  9. Buhler Inc.: Datasheet: NanoSunguard. Uzwil (2016)

    Google Scholar 

  10. Chen, F.-C., Chu, C.-W., He, J., Yang, Y., Lin, J.-L.: Organic thin-film transistors with nanocomposite dielectric gate insulator. Appl. Phys. Lett. 85(15), 3295 (2004). http://dx.doi.org/10.1063/1.1806283

  11. Cho, S.Y., Kang, Y.H., Jung, J.-Y., Nam, S.Y., Lim, J., Yoon, S.C., Choi, D.H., Lee, C.: Novel zinc oxide inks with zinc oxide nanoparticles for low-temperature, solution-processed thin-film transistors. Chem. Mater. 24(18), 3517–3524 (2012). http://dx.doi.org/10.1021/cm2036234

  12. Choi, J.-H., Khang, D.-Y., Myoung, J.-M.: Fabrication and characterization of ZnO nanowire transistors with organic polymer as a dielectric layer. Solid State Commun. 148(3–4), 126–130 (2008). http://dx.doi.org/10.1016/j.ssc.2008.07.040

  13. Caironi, M., Noh, Y.-Y.: Large Area and Flexible Electronics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2015). ISBN 978-3-527-33639-5. http://dx.doi.org/10.1002/9783527679973

  14. Degussa GmbH: Advanced Materials - Datasheet: AdNano Zinc Oxide. Hanau (2006)

    Google Scholar 

  15. Diallo, A.K., Gaceur, M., Dkhil, S.B., Didane, Y., Margeat, O., Ackermann, J., Videlot-Ackermann, C.: Impact of surfactants covering ZnO nanoparticles on solution-processed field-effect transistors: from dispersion state to solid state. Colloids Surf. A Physicochem. Eng. Asp. 500, 214–221 (2016). http://dx.doi.org/10.1016/j.colsurfa.2016.04.036

  16. Diekmann, T.: Organische Elektronik: Polymere Dielektrika für organische Feldeffekt-Transistoren mit Pentacen auf Foliensubstraten. VDM, Saarbrücken (2008). ISBN 3-639-03061-3

    Google Scholar 

  17. Dietrich, H.G., Johnston, J.: Equilibrium between crystalline zinc hydroxide and aqueous solutions of ammonium hydroxide and of sodium hydroxide. J. Am. Chem. Soc. 49(6), 1419–1431 (1927). http://dx.doi.org/10.1021/ja01405a005

  18. Dhananjay, Krupanidhi, S.B.: Low threshold voltage ZnO thin film transistor with a Zn0.7Mg0.3O gate dielectric for transparent electronics. J. Appl. Phys. 101(12), 123717 (2007). http://aip.scitation.org/doi/10.1063/1.2748863#

    Google Scholar 

  19. Desarkar, H.S., Kumbhakar, P., Mitra, A.K.: One-step synthesis of Zn/ZnO hollow nanoparticles by the laser ablation in liquid technique. Laser Phys. Lett. 10(5), 055903 (2013). http://dx.doi.org/10.1088/1612-2011/10/5/055903

  20. Diekmann, T., Pannemann, C., Hilleringmann, U.: Dielectric layers for organic field effect transistors as gate dielectric and surface passivation. Phys. Status Solidi A 205(3), 564–577 (2008). http://dx.doi.org/10.1002/pssa.200723406

  21. Diao, Y., Shaw, L., Bao, Z., Mannsfeld, S.C.B.: Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 7(7), 2145–2159 (2014). http://dx.doi.org/10.1039/c4ee00688g

  22. Ditshego, N.M.J., Sun, K., Zeimpekis, I., Ashburn, P., de Planque, M.R.R.; Chong, H.M.H.: Effects of surface passivation on top-down ZnO nanowire transistors. Microelectron. Eng. 145, 91–95 (2015). http://dx.doi.org/10.1016/j.mee.2015.03.013

  23. Faber, H., Butz, B., Dieker, C., Spiecker, E., Halik, M.: Fully patterned low-voltage transparent metal oxide transistors deposited solely by chemical spray pyrolysis. Adv. Funct. Mater. 23(22), 2828–2834 (2013). http://dx.doi.org/10.1002/adfm.201202334

  24. Faber, H., Burkhardt, M., Jedaa, A., Kälblein, D., Klauk, H., Halik, M.: Low-temperature solution-processed memory transistors based on zinc oxide nanoparticles. Adv. Mater. 21(30), 3099–3104 (2009). http://dx.doi.org/10.1002/adma.200900440

  25. Fortunato, E., Barquinha, P., Martins, R.: Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. (Deerfield Beach, FL) 24(22), 2945–2986 (2012). http://dx.doi.org/10.1002/adma.201103228

  26. Faraji, S., Hashimoto, T., Turner, M.L., Majewski, L.A.: Solution-processed nanocomposite dielectrics for low voltage operated OFETs. Org. Electron. 17, 178–183 (2015). http://dx.doi.org/10.1016/j.orgel.2014.12.010

  27. Furuta, M., Kawaharamura, T., Wang, W., Toda, T., Hirao, T.: Electrical properties of the thin-film transistor with an indium–gallium–zinc oxide channel and an aluminium oxide gate dielectric stack formed by solution-based atmospheric pressure deposition. IEEE Electron Device Lett. 33(6), 851–853 (2012). http://dx.doi.org/10.1109/LED.2012.2192902

  28. Govender, K., Boyle, D.S., Kenway, P.B., O’Brien, P.: Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 14(16), 2575–2591 (2004). http://dx.doi.org/10.1039/B404784B

  29. Gupta, M., Chowdhury, F.R., Barlage, D., Tsui, Y.Y.: Optimization of pulsed laser deposited ZnO thin-film growth parameters for thin-film transistors (TFT) application. Appl. Phys. A 110(4), 793–798 (2013). http://dx.doi.org/10.1007/s00339-012-7154-5

  30. Giesekke, E.W., Gutowsky, H.S., Kirkov, P., Laitinen, H.A.: A proton magnetic resonance and electron diffraction study of the thermal decomposition of tin(IV) hydroxides. Inorg. Chem. 6(7), 1294–1297 (1967). http://dx.doi.org/10.1021/ic50053a005

  31. Guillén, G.G., Palma, M.M.I., Krishnan, B., Avellaneda, D., Castillo, G.A., Roy, T.D.K., Shaji, S.: Structure and morphologies of ZnO nanoparticles synthesized by pulsed laser ablation in liquid: effects of temperature and energy fluence. Mater. Chem. Phys. 162, 561–570 (2015). http://dx.doi.org/10.1016/j.matchemphys.2015.06.030

  32. Goldberger, J., Sirbuly, D.J., Law, M., Yang, P.: ZnO nanowire transistors. J. Phys. Chem. B 109(1), 9–14 (2005). http://dx.doi.org/10.1021/jp0452599

  33. Hosono, E., Fujihara, S., Kimura, T., Imai, H.: Non-basic solution routes to prepare ZnO nanoparticles. J. Sol-Gel Sci. Technol. 29(2), 71–79 (2004). http://dx.doi.org/10.1023/B:JSST.0000023008.14883.1e

  34. Hilleringmann, U.: Mikrosystemtechnik: Prozessschritte, Technologien, Anwendungen, 1st edn. Teubner, Wiesbaden (2006) (Lehrbuch). ISBN 3-8351-0003-3

    Google Scholar 

  35. Hilleringmann, U.: Silizium-Halbleitertechnologie, 6th edn. Springer Fachmedien Wiesbaden, Wiesbaden (2014). ISBN 978-3-8348-1335-0. http://dx.doi.org/10.1007/978-3-8348-2085-3

  36. Homenick, C.M., James, R., Lopinski, G.P., Dunford, J., Sun, J., Park, H., Jung, Y., Cho, G., Malenfant, P.R.L.: Fully printed and encapsulated SWCNT-based thin film transistors via a combination of R2R gravure and inkjet printing. ACS Appl. Mater. Interfaces (2016). http://dx.doi.org/10.1021/acsami.6b06838

  37. Hwang, D.K., Lee, K., Kim, J.H., Im, S., Park, J.H., Kim, E.: Comparative studies on the stability of polymer versus SiO2 gate dielectrics for pentacene thin-film transistors. Appl. Phys. Lett. 89(9), 093507 (2006). http://dx.doi.org/10.1063/1.2345243

  38. Hong, R., Qi, H., Huang, J., He, H., Fan, Z., Shao, J.: Influence of oxygen partial pressure on the structure and photoluminescence of direct current reactive magnetron sputtering ZnO thin films. Thin Solid Films 473(1), 58–62 (2005). http://dx.doi.org/10.1016/j.tsf.2004.06.159

  39. Hench, L.L., West, J.K.: The sol-gel process. Chem. Rev. 90(1), 33–72 (1990). http://dx.doi.org/10.1021/cr00099a003

  40. Inomat GmbH: Datasheet: InoFlex T3. Neunkirchen (2015)

    Google Scholar 

  41. Jaeger, R.C.: Modular Series on Solid State Devices. Introduction to Microelectronic Fabrication, vol. 5, 2nd edn. Prentice Hall/Pearson Education, Upper Saddle River, NJ/London (2002). ISBN 0-201-44494-1

    Google Scholar 

  42. Jung, T., Dodabalapur, A., Wenz, R., Mohapatra, S.: Moisture induced surface polarization in a poly(4-vinyl phenol) dielectric in an organic thin-film transistor. Appl. Phys. Lett. 87(18), 182109 (2005). http://dx.doi.org/10.1063/1.2117629

  43. Jeong, S., Ha, Y.-G., Moon, J., Facchetti, A., Marks, T.J.: Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv. Mater. (Deerfield Beach, FL) 22(12), 1346–1350 (2010). http://dx.doi.org/10.1002/adma.200902450

  44. Jagadish, C., Pearton, S.J.: Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications. Elsevier, Amsterdam, London (2006). ISBN 0-080-44722-8

    Google Scholar 

  45. Jang, K.-S., Wee, D., Kim, Y.H., Kim, J., Ahn, T., Ka, J.-W., Yi, M.H.: Surface modification of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors. Langmuir ACS J. Surf. Colloids 29(23), 7143–7150 (2013). http://dx.doi.org/10.1021/la401356u

  46. Kagan, C.R., Andry, P.: Thin-Film Transistors. Dekker, New York, NY (2003). ISBN 0-824-70959-4

    Google Scholar 

  47. Katayama, M.: TFT-LCD technology. Thin Solid Films 341(1–2), 140–147 (1999). http://dx.doi.org/10.1016/S0040-6090(98)01519-3

  48. Kim, G.H., Du Ahn, B., Shin, H.S., Jeong, W.H., Kim, H.J., Kim, H.J.: Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors. Appl. Phys. Lett. 94(23), 233501 (2009). http://dx.doi.org/10.1063/1.3151827

  49. Kim, S.H., Jang, J., Jeon, H., Yun, W.M., Nam, S., Park, C.E.: Hysteresis-free pentacene field-effect transistors and inverters containing poly(4-vinyl phenol-co-methyl methacrylate) gate dielectrics. Appl. Phys. Lett. 92(18), 183306 (2008). http://dx.doi.org/10.1063/1.2924772

  50. Kleinwechter, H., Janzen, C., Knipping, J., Wiggers, H., Roth, P.: Formation and properties of ZnO nano-particles from gas phase synthesis processes. J. Mater. Sci. 37(20), 4349–4360 (2002). http://dx.doi.org/10.1023/A:1020656620050

  51. Khan, S.A., Kuo, P.-C., Jamshidi-Roudbari, A., Hatalis, M.: Effect of uniaxial tensile strain on electrical performance of amorphous IGZO TFTs and circuits on flexible Metal foils. In: 68th Annual Device Research Conference (DRC), pp. 119–120 (2010)

    Google Scholar 

  52. Klingshirn, C.: ZnO: material, physics and applications. Chemphyschem: Eur. J. Chem. Phys. Phys. Chem. 8(6), 782–803 (2007). http://dx.doi.org/10.1002/cphc.200700002

  53. Kim, S.-S., Na, S.-I., Jo, J., Tae, G., Kim, D.-Y.: Efficient polymer solar cells fabricated by simple brush painting. Adv. Mater. 19(24), 4410–4415 (2007). http://dx.doi.org/10.1002/adma.200702040

  54. Kalblein, D., Ryu, H., Ante, F., Fenk, B., Hahn, K., Kern, K., Klauk, H.: High-performance ZnO nanowire transistors with aluminum top-gate electrodes and naturally formed hybrid self-assembled monolayer/AlO(x) gate dielectric. ACS Nano 8(7), 6840–6848 (2014). http://dx.doi.org/10.1021/nn501484e

  55. Kim, S.J., Yoon, S., Kim, H.J.: Review of solution-processed oxide thin-film transistors. Jpn. J. Appl. Phys. 53(2S), 02BA02 (2014). http://dx.doi.org/10.7567/JJAP.53.02BA02

  56. Lee, B.H., Cho, S., Hwang, J.K., Kim, S.H., Sung, M.M.: UV-enhanced atomic layer deposition of ZrO2 thin films at room temperature. Thin Solid Films 518(22), 6432–6436 (2010). http://dx.doi.org/10.1016/j.tsf.2010.03.059

  57. Lee, S., Jeong, Y., Jeong, S., Lee, J., Jeon, M., Moon, J.: Solution-processed ZnO nanoparticle-based semiconductor oxide thin-film transistors. Superlattice. Microst. 44(6), 761–769 (2008). http://dx.doi.org/10.1016/j.spmi.2008.09.002

  58. Lee, S., Jeong, S., Kim, D., Park, B.K., Moon, J.: Fabrication of a solution-processed thin-film transistor using zinc oxide nanoparticles and zinc acetate. Superlattice. Microst. 42(1–6), 361–368 (2007). http://dx.doi.org/10.1016/j.spmi.2007.04.036

  59. Lim, S.C., Kim, S.H., Koo, J.B., Lee, J.H., Ku, C.H., Yang, Y.S., Zyung, T.: Hysteresis of pentacene thin-film transistors and inverters with cross-linked poly(4-vinylphenol) gate dielectrics. Appl. Phys. Lett. 90(17), 173512 (2007). http://dx.doi.org/10.1063/1.2733626

  60. Lim, S.J., Kim, J.-M., Kim, D., Lee, C., Park, J.-S., Kim, H.: The effects of UV exposure on plasma-enhanced atomic layer deposition ZnO thin film transistor. Electrochem. Solid-State Lett. 13(5), H151 (2010). http://dx.doi.org/10.1149/1.3322733

  61. Lim, S.J., Kwon, S.-J., Kim, H., Park, J.-S.: High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO. Appl. Phys. Lett. 91(18), 183517 (2007). http://dx.doi.org/10.1063/1.2803219

  62. Lee, S., Koo, B., Shin, J., Lee, E., Park, H., Kim, H.: Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance. Appl. Phys. Lett. 88(16), 162109 (2006). http://dx.doi.org/10.1063/1.2196475

  63. Liu, C.-T., Lee, W.-h., Shih, T.-L.: Synthesis of ZnO nanoparticles to fabricate a mask-free thin-film transistor by inkjet printing. J. Nanotechnol. 2012(1), 1–8 (2012). http://dx.doi.org/10.1155/2012/710908

  64. Little, T.W., Takahara, K.-I., Koike, H., Nakazawa, T., Yudasaka, I., Ohshima, H.: Low temperature poly-Si TFTs using solid phase crystallization of very thin films and an electron cyclotron resonance chemical vapor deposition gate insulator. Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3724–3728 (1991). http://dx.doi.org/10.1143/JJAP.30.3724

  65. Meyers, S.T., Anderson, J.T., Hung, C.M., Thompson, J., Wager, J.F., Keszler, D.A.: Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs. J. Am. Chem. Soc. 130(51), 17603–17609 (2008). http://dx.doi.org/10.1021/ja808243k

  66. MicroChemicals GmbH: Datasheet: Clariant AZ 5214E. Ulm (2000)

    Google Scholar 

  67. Mitsubishi Polyester Film GmbH: Datasheet Hostaphan GN. Wiesbaden (2016)

    Google Scholar 

  68. Mahmoudabadi, F., Ma, X., Hatalis, M.K., Shah, K.N., Levendusky, T.L.: Amorphous IGZO TFTs and circuits on conformable aluminum substrates. Solid State Electron. 101, 57–62 (2014). http://dx.doi.org/10.1016/j.sse.2014.06.031

    Article  Google Scholar 

  69. Mei, P., Ng, T.N., Lujan, R.A., Schwartz, D.E., Kor, S., Krusor, B.S., Veres, J.: Utilizing high resolution and reconfigurable patterns in combination with inkjet printing to produce high performance circuits. Appl. Phys. Lett. 105(12), 123301 (2014). http://dx.doi.org/10.1063/1.4896547

    Article  Google Scholar 

  70. Morosawa, N., Nishiyama, M., Ohshima, Y., Sato, A., Terai, Y., Tokunaga, K., Iwasaki, J., Akamatsu, K., Kanitani, Y., Tanaka, S., Arai, T., Nomoto, K.: High-mobility self-aligned top-gate oxide TFT for high-resolution AM-OLED. J. Soc. Inf. Disp. 21(11), 467–473 (2013). http://dx.doi.org/10.1002/jsid.206

    Article  Google Scholar 

  71. Munzenrieder, N., Petti, L., Zysset, C., Gork, D., Buthe, L., Salvatore, G.A., Troster, G.: Investigation of gate material ductility enables flexible a-IGZO TFTs bendable to a radius of 1.7 mm. In: 43rd European Solid State Device Research Conference (ESSDERC), pp. 362–365 (2013)

    Google Scholar 

  72. Meyers, T., Vidor, F.F., Brassat, K., Lindner, J.K.N., Hilleringmann, U.: Low-voltage DNTT-based thin-film transistors and inverters for flexible electronics. Microelectron. Eng. 174, 35–39 (2017). http://dx.doi.org/10.1016/j.mee.2016.12.018

    Article  Google Scholar 

  73. Meyers, T., Vidor, F.F., Hilleringmann, U.: Low-voltage DNTT based thin-film transistors and inverters for flexible electronics. In: The 42nd International Conference on Micro and Nano Engineering (MNE2016) (2016)

    Google Scholar 

  74. Meyers, T., Vidor, F.F., Puls, C., Hilleringmann, U.: Low-voltage C8-BTBT thin-film transistors for flexible electronics. In: Materials Today: Proceedings (7th NRW Nano-Conference). https://doi.org/10.1016/j.matpr.2017.09.192

  75. Nanophase Technologies Corporation: Datasheet: ZN-2650. Romeoville, IL (2016)

    Google Scholar 

  76. Nanophase Technologies Corporation: Datasheet: ZN-3008C. Romeoville, IL (2016)

    Google Scholar 

  77. Nanophase Technologies Corporation: Datasheet: ZN-3014A. Romeoville, IL (2016)

    Google Scholar 

  78. Nam, T., Lee, C.W., Kim, H.J., Kim, H.: Growth characteristics and properties of Ga-doped ZnO (GZO) thin films grown by thermal and plasma-enhanced atomic layer deposition. Appl. Surf. Sci. 295, 260–265 (2014). http://dx.doi.org/10.1016/j.apsusc.2014.01.027

    Article  Google Scholar 

  79. Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S.-J., Morkoç, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005). http://dx.doi.org/10.1063/1.1992666

    Article  Google Scholar 

  80. Okamura, K., Hahn, H.: Carrier transport in nanocrystalline field-effect transistors: impact of interface roughness and geometrical carrier trap. Appl. Phys. Lett. 97(15), 153114. http://dx.doi.org/10.1063/1.3495798

  81. Ohyama, M., Kouzuka, H., Yoko, T.: Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films 306(1), 78–85 (1997). http://dx.doi.org/10.1016/S0040-6090(97)00231-9

    Article  Google Scholar 

  82. Okamura, K., Mechau, N., Nikolova, D., Hahn, H.: Influence of interface roughness on the performance of nanoparticulate zinc oxide field-effect transistors. Appl. Phys. Lett. 93(8), 083105 (2008). http://dx.doi.org/10.1063/1.2972121

    Article  Google Scholar 

  83. Pannemann, C.: Prozesstechnik für organische Feldeffekt-Transistoren: Kontakte, Dielektrika und Oberflächenpassivierungen. Ph.D. Dissertation Paderborn University, Paderbron (2006)

    Google Scholar 

  84. Pesavento, P.V., Chesterfield, R.J., Newman, C.R., Frisbie, C.D.: Gated four-probe measurements on pentacene thin-film transistors: Contact resistance as a function of gate voltage and temperature. J. Appl. Phys. 96(12), 7312 (2004). http://dx.doi.org/10.1063/1.1806533

    Article  Google Scholar 

  85. Park, S.-H.K., Hwang, C.-S., Jeong, H.Y., Chu, H.Y., Cho, K.I.: Transparent ZnO-TFT arrays fabricated by atomic layer deposition. Electrochem. Solid-State Lett. 11(1), H10 (2008). http://dx.doi.org/10.1149/1.2801017

    Article  Google Scholar 

  86. Park, J.S., Maeng, W.-J., Kim, H.-S., Park, J.-S.: Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 520(6), 1679–1693 (2012). http://dx.doi.org/10.1016/j.tsf.2011.07.018

    Article  Google Scholar 

  87. Petti, L., Münzenrieder, N., Vogt, C., Faber, H., Büthe, L., Cantarella, G., Bottacchi, F., Anthopoulos, T.D., Tröster, G.: Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 3(2), 021303 (2016). http://dx.doi.org/10.1063/1.4953034

    Article  Google Scholar 

  88. Park, J.H., Park, J.H., Biswas, P., Kwon, D.K., Han, S.W., Baik, H.K., Myoung, J.-M.: Adopting novel strategies in achieving high-performance single-layer network structured ZnO nanorods thin film transistors. ACS Appl. Mater. Interfaces 8(18), 11564–11574 (2016). http://dx.doi.org/10.1021/acsami.5b12321

    Article  Google Scholar 

  89. Phan, T.-L., Zhang, Y.D., Yang, D.S., Nghia, N.X., Thanh, T.D., Yu, S.C.: Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling. Appl. Phys. Lett. 102(7), 072408 (2013). http://dx.doi.org/10.1063/1.4793428

    Article  Google Scholar 

  90. Suwanboon, S., Amornpitoksuk, P., Sukolrat, A., Muensit, N.: Optical and photocatalytic properties of La-doped ZnO nanoparticles prepared via precipitation and mechanical milling method. Ceram. Int. 39(3), 2811–2819 (2013). http://dx.doi.org/10.1016/j.ceramint.2012.09.050

    Article  Google Scholar 

  91. Sato, T.: Preparation and thermal decomposition of indium hydroxide. J. Therm. Anal. Calorim. 82(3), 775–782 (2005). http://dx.doi.org/10.1007/s10973-005-0963-4

    Article  Google Scholar 

  92. Smithells, C.J., Brandes, E.A., Brook, G.B.: Smithells Metal Reference Book, 7th edn. Butterworths, London (1992). ISBN 0-750-61020-4

    Google Scholar 

  93. Søndergaard, R.R., Hösel, M., Krebs, F.C.: Roll-to-Roll fabrication of large area functional organic materials. J. Polym. Sci. B Polym. Phys. 51(1), 16–34 (2013). http://dx.doi.org/10.1002/polb.23192

    Article  Google Scholar 

  94. Sekine, T., Ikeda, H., Kosakai, A., Fukuda, K., Kumaki, D., Tokito, S.: Improvement of mechanical durability on organic TFT with printed electrodes prepared from nanoparticle ink. Appl. Surf. Sci. 294, 20–23 (2014). http://dx.doi.org/10.1016/j.apsusc.2013.12.168

    Article  Google Scholar 

  95. Sirringhaus, H.: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. (Deerfield Beach, FL) 26(9), 1319–1335 (2014). http://dx.doi.org/10.1002/adma.201304346

  96. Shimogaki, T., Kawahara, H., Higashihata, M., Ikenoue, H., Nakamura, D., Nakata, Y., Okada, T.: Fabrication of ZnO crystals by UV-laser annealing on ZnO nanoparticles prepared by laser ablation method. In: Teherani, F.H., Look, D.C., Rogers, D.J. (eds.) SPIE OPTO. SPIE Proceedings, pp. 93640C. SPIE (2015)

    Google Scholar 

  97. Shimizu, K., Sugiura, O., Matsumura, M.: High-mobility poly-Si thin-film transistors fabricated by a novel excimer laser crystallization method. IEEE Trans. Electron Devices 40(1), 112–117 (1993). http://dx.doi.org/10.1109/16.249432

    Article  Google Scholar 

  98. Suresh, A., Wellenius, P., Dhawan, A., Muth, J.: Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors. Appl. Phys. Lett. 90(12), 123512 (2007). http://dx.doi.org/10.1063/1.2716355

    Article  Google Scholar 

  99. Theissmann, R., Bubel, S., Sanlialp, M., Busch, C., Schierning, G., Schmechel, R.: High performance low temperature solution-processed zinc oxide thin film transistor. Thin Solid Films 519(16), 5623–5628 (2011). http://dx.doi.org/10.1016/j.tsf.2011.02.073

    Article  Google Scholar 

  100. Thiemann, S., Gruber, M., Lokteva, I., Hirschmann, J., Halik, M., Zaumseil, J.: High-mobility ZnO nanorod field-effect transistors by self-alignment and electrolyte-gating. ACS Appl. Mater. Interfaces 5(5), 1656–1662 (2013). http://dx.doi.org/10.1021/am3026739

    Article  Google Scholar 

  101. Thompson, M.J.: Thin film transistors for large area electronics. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 2(4), 827 (1984). http://dx.doi.org/10.1116/1.582902

  102. Tominaga, K., Murayama, T., Sato, Y., Mori, I.: Energetic oxygen particles in the reactive sputtering of Zn targets in Ar/O2 atmospheres. Thin Solid Films 343–344, 81–84 (1999). http://dx.doi.org/10.1016/S0040-6090(98)01579-X

    Article  Google Scholar 

  103. Uppalapati, S., Chada, S., Engelhard, M.H., Yan, M.: Photochemical Reactions of Poly(4-vinylphenol) Thin Films. Macromol. Chem. Phys. 211(4), 461–470 (2010). http://dx.doi.org/10.1002/macp.200900484

    Article  Google Scholar 

  104. Uchikoga, S., Ibaraki, N.: Low temperature poly-Si TFT-LCD by excimer laser anneal. Thin Solid Films 383(1–2), 19–24 (2001). http://dx.doi.org/10.1016/S0040-6090(00)01644-8

    Article  Google Scholar 

  105. Vidor, F.F., Meyers, T., Hilleringmann, U.: Integration of ZnO nanoparticle transistors on freestanding flexible substrates. In: Du Plessis, M. (ed.) Fourth Conference on Sensors, MEMS and Electro-Optic Systems. SPIE Proceedings, pp. 100360A. SPIE (2017)

    Google Scholar 

  106. Vidor, F.F., Meyers, T., Wirth, G.I., Hilleringmann, U.: ZnO nanoparticle thin-film transistors on flexible substrate using spray-coating technique. Microelectron. Eng. 159, 155–158 (2016). http://dx.doi.org/10.1016/j.mee.2016.02.059

    Article  Google Scholar 

  107. Veres, J., Ogier, S., Lloyd, G., Leeuw, D.d.: Gate insulators in organic field-effect transistors. Chem. Mater. 16(23), 4543–4555 (2004). http://dx.doi.org/10.1021/cm049598q

  108. Vicca, P., Steudel, S., Smout, S., Raats, A., Genoe, J., Heremans, P.: A low-temperature-cross-linked poly(4-vinylphenol) gate-dielectric for organic thin film transistors. Thin Solid Films 519(1), 391–393 (2010). http://dx.doi.org/10.1016/j.tsf.2010.08.009

    Article  Google Scholar 

  109. Wang, Y., Acton, O., Ting, G., Weidner, T., Ma, H., Castner, D.G., Jen, A.K.-Y.: Low-voltage high-performance organic thin film transistors with a thermally annealed polystyrene/hafnium oxide dielectric. Appl. Phys. Lett. 95(24), 243302 (2009). http://dx.doi.org/10.1063/1.3268455

    Article  Google Scholar 

  110. Wang, C.-Y., Fuentes-Hernandez, C., Liu, J.-C., Dindar, A., Choi, S., Youngblood, J.P., Moon, R.J., Kippelen, B.: Stable low-voltage operation top-gate organic field-effect transistors on cellulose nanocrystal substrates. ACS Appl. Mater. Interfaces 7(8), 4804–4808 (2015). http://dx.doi.org/10.1021/am508723a

    Article  Google Scholar 

  111. Wu, Y., Li, Y., Ong, B.S., Liu, P., Gardner, S., Chiang, B.: High-performance organic thin-film transistors with solution-printed gold contacts. Adv. Mater. 17(2), 184–187 (2005). http://dx.doi.org/10.1002/adma.200400690

    Article  Google Scholar 

  112. Wolff, K.: Integrationstechniken für Feldeffekttransistoren mit halbleitenden Nanopartikeln: Einzel- und Multipartikel-Bauelemente. Vieweg+Teubner, Wiesbaden (2011). ISBN 978-3-8348-1767-9. http://dx.doi.org/10.1007/978-3-8348-8271-4

    Book  Google Scholar 

  113. Wong, W.S., Salleo, A.: Flexible Electronics: Materials and Applications. Springer, New York, NY (2009). Electronic materials: science & technology. ISBN 978-0-387-74362-2. http://www.springer.com

  114. Yuan, Y., Giri, G., Ayzner, A.L., Zoombelt, A.P., Mannsfeld, S.C.B., Chen, J., Nordlund, D., Toney, M.F., Huang, J., Bao, Z.: Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 3005 (2014). http://dx.doi.org/10.1038/ncomms4005

    Google Scholar 

  115. Yamabi, S., Imai, H.: Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem. 12(12), 3773–3778 (2002). http://dx.doi.org/10.1039/b205384e

    Article  Google Scholar 

  116. Yoon, J.-Y., Jeong, S., Lee, S.S., Kim, Y.H., Ka, J.-W., Yi, M.H., Jang, K.-S.: Enhanced performance of solution-processed organic thin-film transistors with a low-temperature-annealed alumina interlayer between the polyimide gate insulator and the semiconductor. ACS Appl. Mater. Interfaces 5(11), 5149–5155 (2013). http://dx.doi.org/10.1021/am400996q

    Article  Google Scholar 

  117. Yun, D.-J., Seo, G.-h., Lee, W.-h., Yoon, S.-M.: Improvements in sensing responses to ammonia gas for the In-Ga-Zn-O thin-film transistor using atomic-layer-deposited ZnO nanoparticles as gas sensitizers. ECS Trans. 75(10), 235–240 (2016). http://dx.doi.org/10.1149/07510.0235ecst

  118. Zschieschang, U., Ante, F., Kälblein, D., Yamamoto, T., Takimiya, K., Kuwabara, H., Ikeda, M., Sekitani, T., Someya, T., Nimoth, J.B., Klauk, H.: Dinaphtho[2,3-b2’,3’-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability. Org. Electron. 12(8), 1370–1375 (2011). http://dx.doi.org/10.1016/j.orgel.2011.04.018

    Article  Google Scholar 

  119. Zaki, T., Rödel, R., Letzkus, F., Richter, H., Zschieschang, U., Klauk, H., Burghartz, J.N.: AC characterization of organic thin-film transistors with asymmetric gate-to-source and gate-to-drain overlaps. Org. Electron. 14(5), 1318–1322 (2013). http://dx.doi.org/10.1016/j.orgel.2013.02.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vidor, F.F., Wirth, G.I., Hilleringmann, U. (2018). Integration. In: ZnO Thin-Film Transistors for Cost-Efficient Flexible Electronics. Springer, Cham. https://doi.org/10.1007/978-3-319-72556-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72556-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72555-0

  • Online ISBN: 978-3-319-72556-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics