Skip to main content

A Review of the Preparation Methods of WC Powders

  • Conference paper
  • First Online:
TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Tungsten carbides, which can be widely used for cutting and drilling tools, chemical catalyst and aerospace coatings, have attracted widespread attentions. However, the cost of conventional processes to produce tungsten carbides can be very high, therefore, there is a permanent effort to synthesize WC powder at low temperature to minimize the production cost. Some novel processing techniques have been developed to partially solve this problem. This paper reviewed the current research trends in preparation of WC containing spark plasma sintering, combustion synthesis, sol-gel and in situ carburization method, chemical vapor reaction synthesis and the spray conversion process, etc. The present review also discussed the potential applications, the feasibility, the advantages and disadvantages of industrialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kosolapova TIA (1971) Carbides: properties, production, and applications. Chem Commun 49:11133–11148

    Google Scholar 

  2. Sternitzke M (1997) Structural ceramic nanocomposites. J Eur Ceram Soc 17:1061–1082

    Article  CAS  Google Scholar 

  3. Bounhoure V, Lay S, Loubradou M, Missiaen J (2008) Special WC/Co orientation relationships at basal facets of WC grains in WC-Co alloys. J Mater Sci 43:892–899

    Article  CAS  Google Scholar 

  4. Basu B, Raju GB, Suri AK (2006) Processing and properties of monolithic TiB2 based materials. Int Mater Rev 51:352–374

    Article  CAS  Google Scholar 

  5. Einarsrud M, Hagen E, Pettersen G, Grande T (1997) Pressureless sintering of titanium diboride with nickel, nickel boride, and iron additives. J Am Ceram Soc 80:3013–3020

    Article  CAS  Google Scholar 

  6. Jia K, Fischer TE, Gallois B (1998) Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites. Nanostruct Mater 10:875–891

    Article  CAS  Google Scholar 

  7. Schubert WD, Bock A, Lux B (1995) General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production. Int J Refract Met Hard Mater 13:281–296

    Article  CAS  Google Scholar 

  8. Mukhopadhyay A, Basu B (2007) Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: a review. Int Mater Rev 52:257–288

    Article  CAS  Google Scholar 

  9. Shi M, Zhang W, Li Y, Chu Y, Ma C (2016) Tungsten carbide-reduced graphene oxide intercalation compound as co-catalyst for methanol oxidation. Chin J Catal 37:1851–1859

    Article  CAS  Google Scholar 

  10. Zhu H, Sun Z, Chen M, Cao H, Li K, Cai Y, Wang F (2017) Highly porous composite based on tungsten carbide and N-doped carbon aerogels for electrocatalyzing oxygen reduction reaction in acidic and alkaline media. Electrochim Acta 236:154–160

    Article  CAS  Google Scholar 

  11. Bukola S, Merzougui B, Akinpelu A, Zeama M (2016) Cobalt and nitrogen Co-doped tungsten carbide catalyst for oxygen reduction and hydrogen evolution reactions. Electrochim Acta 190:1113–1123

    Article  CAS  Google Scholar 

  12. Singla G, Singh K, Pandey OP (2017) Catalytic activity of tungsten carbide-carbon (WC@C) core-shell structured for ethanol electro-oxidation. Mater Chem Phys 186:19–28

    Article  CAS  Google Scholar 

  13. George M, Baker BS (1975) New materials for fluoro sulfonic acid electrolyte fuel cells. Interim report no 2, 7 March–7 November 1975

    Google Scholar 

  14. Garg D, Dyer PN (1989) Tungsten carbide erosion resistant coating for aerospace components. In: MRS proceedings, vol 168

    Google Scholar 

  15. Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science 181:547–549

    Article  CAS  Google Scholar 

  16. Ma Y, Guan G, Hao X, Cao J, Abudula A (2017) Molybdenum carbide as alternative catalyst for hydrogen productiona review. Renew Sustain Energy Rev 75:1101–1129

    Article  CAS  Google Scholar 

  17. Wu M, Lin X, Hagfeldt A, Ma T (2011) Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew Chem Int Ed 50:3520–3524

    Article  CAS  Google Scholar 

  18. Toth LE (1971) Transition metal carbides and nitrides. Academic Press

    Google Scholar 

  19. Koc R, Kodambaka SK (2000) Tungsten carbide (WC) synthesis from novel precursors. J Eur Ceram Soc 20:1859–1869

    Article  CAS  Google Scholar 

  20. Löfberg A, Frennet A, Leclercq G, Leclercq L, Giraudon JM (2000) Mechanism of WO3 reduction and carburization in CH4/H2 mixtures leading to bulk tungsten carbide powder catalysts. J Catal 189:170–183

    Article  CAS  Google Scholar 

  21. Kanayama N, Horie Y, Nakayama Y (2007) Plasma-carburizing of tungsten with a C3H8-H2 mixed gas. ISIJ Int 33:615–617

    Article  Google Scholar 

  22. Won HI, Nersisyan HH, Won CW. Combustion synthesis of nano-sized tungsten carbide powder and effects of sodium halides

    Google Scholar 

  23. Fitzsimmons M, Sarin VK (1995) Comparison of WCl6-CH4-H2 and WF6-CH4-H2 systems for growth of WC coatings. Surf Coat Technol 76–77:250–255

    Article  Google Scholar 

  24. Fecht HJ, Hellstern E, Fu Z, Johnson WL (1990) Nanocrystalline metals prepared by high-energy ball milling. Metall Trans A 21:2333–2337

    Article  Google Scholar 

  25. Zhang Z, Wahlberg S, Wang M, Muhammed M (1999) Processing of nanostructured WC-Co powder from precursor obtained by co-precipitation. Nanostruct Mater 12:163–166

    Article  Google Scholar 

  26. Seegopaul P, Gao L (2003) Method of forming nanograin tungsten carbide and recycling tungsten carbide, US

    Google Scholar 

  27. Zhao J, Holland T, Unuvar C, Munir ZA (2009) Sparking plasma sintering of nanometric tungsten carbide. Int J Refractory Met Hard Mater 27:130–139

    Article  CAS  Google Scholar 

  28. Ryu T, Sohn HY, Hwang KS, Fang ZZ (2008) Tungsten carbide nanopowder by plasma-assisted chemical vapor synthesis from WCl6–CH4–H2 mixtures. J Mater Sci 43:5185–5192

    Article  CAS  Google Scholar 

  29. Hojo J, Oku T, Kato A (1978) Tungsten carbide powders produced by the vapor phase reaction of the WCl6-CH4-H2 system. J Less Common Met 59:85–95

    Article  CAS  Google Scholar 

  30. Wanner S, Hilaire L, Wehrer P, Hindermann JP, Maire G (2000) Obtaining tungsten carbides from tungsten bipyridine complexes via low temperature thermal treatment. Appl Catal A Gen 203:55–70

    Article  CAS  Google Scholar 

  31. Medeiros FFP, Oliveira SAD, Souza CPD, Silva AGPD, Gomes UU, Souza JFD (2001) Synthesis of tungsten carbide through gas–solid reaction at low temperatures. Mater Sci Eng A 315:58–62

    Article  Google Scholar 

  32. Löfberg A, Frennet A, Leclercq G, Leclercq L, Giraudon JM (2000) Mechanism of WO3 reduction and carburization in CH4/H2 mixtures leading to bulk tungsten carbide powder catalysts. J Catal 189:170–183

    Article  CAS  Google Scholar 

  33. Decker S, Löfberg A, Bastin JM, Frennet A (1997) Study of the preparation of bulk tungsten carbide catalysts with C2H6/H2 and C2H4/H2 carburizing mixtures. Catal Lett 44:229–239

    Article  CAS  Google Scholar 

  34. Ma Y, Guan G, Hao X, Cao J, Abudula A (2017) Molybdenum carbide as alternative catalyst for hydrogen productiona review. Renew Sustain Energy Rev 75:1101–1129

    Article  CAS  Google Scholar 

  35. Wu Z, Yang Y, Gu D, Li Q, Feng D, Chen Z, Tu B, Webley PA, Zhao D (2009) Silica-templated synthesis of ordered mesoporous tungsten carbide/graphitic carbon composites with nanocrystalline walls and high surface areas via a temperature-programmed carburization route. Small 5:2738

    Article  CAS  Google Scholar 

  36. Ma C, Chen Z, Lin W, Zhao F, Shi M (2012) Template-free environmentally friendly synthesis and characterization of unsupported tungsten carbide with a controllable porous framework. Microporous Mesoporous Mater 149:76–85

    Article  CAS  Google Scholar 

  37. Cui X, Li H, Guo L, He D, Chen H, Shi J (2008) Synthesis of mesoporous tungsten carbide by an impregnation–compaction route, and its NH3 decomposition catalytic activity. Dalton Trans 6435

    Google Scholar 

  38. Giordano C, Erpen C, Yao W, Antonietti M (2008) Synthesis of Mo and W carbide and nitride nanoparticles via a simple “urea glass” route. Nano Lett 8:4659–4663

    Article  CAS  Google Scholar 

  39. Giordano C, Antonietti M (2011) Synthesis of crystalline metal nitride and metal carbide nanostructures by sol–gel chemistry. Nano Today 6:366–380

    Article  CAS  Google Scholar 

  40. Barker J, Saidi MY, Swoyer JL (2003) Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method. Electrochem Solid-State Lett 6:A53

    Article  CAS  Google Scholar 

  41. Guo X, Zhu L, Li W, Yang H (2013) Preparation of SiC powders by carbothermal reduction with bamboo charcoal as renewable carbon source. J Adv Ceram 2:128–134

    Article  CAS  Google Scholar 

  42. Wang J, Risa Ishida A, Takarada T (2000) Carbothermal reactions of quartz and kaolinite with coal char. Energy Fuels 14:1108–1114

    Article  CAS  Google Scholar 

  43. Czosnek C, Janik JF, Olejniczak Z (2002) Silicon carbide modified carbon materials. Formation of nanocrystalline SiC from thermochemical processes in the system coal tar pitch/poly(carbosilane). J Clust Sci 13:487–502

    Article  CAS  Google Scholar 

  44. Narisawa M (2008) Silicon carbide particle formation from carbon black and polymethylsilsesquioxane mixtures with melt pressing. J Ceram Soc Jpn 116:121–125

    Article  CAS  Google Scholar 

  45. Alizadeh A, Taheri-Nassaj E, Ehsani N (2004) Synthesis of boron carbide powder by a carbothermic reduction method. J Eur Ceram Soc 24:3227–3234

    Article  CAS  Google Scholar 

  46. Islam M, Martinez-Duarte R. A sustainable approach for tungsten carbide synthesis using renewable biopolymers

    Google Scholar 

  47. Wang B, Tian C, Wang L, Wang R, Fu H (2010) Chitosan: a green carbon source for the synthesis of graphitic nanocarbon, tungsten carbide and graphitic nanocarbon/tungsten carbide composites. Nanotechnology 21:025606

    Article  CAS  Google Scholar 

  48. Merzhanov AG (2004) The chemistry of self-propagating high-temperature synthesis. J Mater Chem 14:1779–1786

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Dang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., Dang, J., Lv, Z., Zhang, S., Lv, X., Bai, C. (2018). A Review of the Preparation Methods of WC Powders. In: & Materials Society, T. (eds) TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72526-0_80

Download citation

Publish with us

Policies and ethics