The Influence of Plastic Deformation Mechanisms on the Adhesion Behavior and Collagen Formation in Osteoblast Cells

  • B. UzerEmail author
  • F. Monte
  • Kamal R. Awad
  • Pranesh B. Aswath
  • Venu G. Varanasi
  • D. Canadinç
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


In many of biomedical applications, the implant might get in direct contact with the bone tissue where the osteogenesis needs to be stimulated. If osteoblasts can not successfully attach on the implant surface, the bone might resorb and implant can fail. In the current study MC3T3 cells were cultured on the 316L stainless steel samples which were deformed up to four different strain levels (5, 15, 25 and 35%) to activate plastic deformation mechanisms (slip and twinning) in different volume fractions. Scanning electron microscopy (SEM) images showed that cells adhered and spread significantly on the 25 and 35% deformed samples owing to the greater surface roughness and energy provided by the increased density of micro-deformation mechanisms which promoted the formation of focal contacts. In addition, significant amount of collagen formation was observed on the sample deformed up to 25% of strain which can be due to the ideal match of the surface roughness and collagen molecules. Overall these results show that material’s microstructure can be manipulated through plastic deformation mechanisms in order to enhance the cell response and collagen deposition. As a result long lasting implants could be obtained which would eliminate additional surgical interventions and provide a successful treatment.


Osteoblast Collagen formation Cell adhesion Micro-deformation mechanisms Slip Twinning Plastic deformation 



D. Canadinc acknowledges the financial support by the Turkish Academy of Sciences (TÜBA) within the Outstanding Young Scientist Program (GEBİP).


  1. 1.
    Chen Q, Thouas GA (2015) Mater Sci Eng R Reports 87:1–57CrossRefGoogle Scholar
  2. 2.
    Uzer B, Toker SM, Cingoz A, Bagci-Onder T, Gerstein G, Maier HJ, Canadinc D (2016) J Mech Behav Biomed Mater 60:177–186CrossRefGoogle Scholar
  3. 3.
    Anselme K (2000) Biomaterials 21:667–681CrossRefGoogle Scholar
  4. 4.
    Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Dent Mater 23:844–854CrossRefGoogle Scholar
  5. 5.
    Linez-Bataillon P, Monchau F, Bigerelle M, Hildebrand HF (2002) Biomol Eng 19:133–141CrossRefGoogle Scholar
  6. 6.
    Plecko M, Sievert C, Andermatt D, Frigg R, Kronen P, Klein K, Stübinger S, Nuss K, Bürki A, Ferguson S, Stoeckle U, Von Rechenberg B (2012) Bmc Musculoskelet Disord 1–12Google Scholar
  7. 7.
    Gronowicz G, McCarthy MB (1996) J Orthop Res 14:878–887CrossRefGoogle Scholar
  8. 8.
    Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis YF (2001) Biomaterials 22:1241–1251CrossRefGoogle Scholar
  9. 9.
    Qin L, Zeng Q, Wang W, Zhang Y, Dong G (2014) J Mater Sci 2662–2671CrossRefGoogle Scholar
  10. 10.
    Meyer U, Büchter A, Wiesmann HP, Joos U, Jones DB (2005) Eur Cells Mater 9:39–49CrossRefGoogle Scholar
  11. 11.
    Wexell CL (2013) Int J BiomaterGoogle Scholar
  12. 12.
    Bordji K, Jouzeau JY, Mainard D, Payan E, Delagoutte JP, Netter P (1996) Biomaterials 17:491–500CrossRefGoogle Scholar
  13. 13.
    Martinesi FBM, Bruni S, Stio M, Treves C, Bacci T (2006) J Biomed Mater Res A 81:131–145Google Scholar
  14. 14.
    Hayakawa T, Yoshida E, Yoshimura Y, Uo M, Yoshinari M (2012) Int J Biomaterials 1–7Google Scholar
  15. 15.
    Wu C, Chen M, Zheng T, Yang X (2015) Biomed Mat Eng 26:155–164Google Scholar
  16. 16.
    Arjonen A, Kaukonen R, Ivaska J (2011) Cell Adhes Migr 5:421–430CrossRefGoogle Scholar
  17. 17.
    Mattila PK, Lappalainen P (2008) Nat Rev Mol Cell Biol 9:446–454CrossRefGoogle Scholar
  18. 18.
    Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD (1996) J Biomed Mater Res 32:55–63CrossRefGoogle Scholar
  19. 19.
    Viguet-Carrin PDDS, Garnero P (2006) Osteoporos Int 17:319–336CrossRefGoogle Scholar
  20. 20.
    Han J, Shin S, Herr Y, Kwon Y, Chung J (2011) Clin Oral Implant Res 1391–1398Google Scholar
  21. 21.
    De Barros RRM, Novaes AB Jr, Korn P, Queiroz A, De Almeida ALG, Hintze V, Scharnweber D, Bierbaum S, Stadlinger B (2013) Clin Implant Dent Relat Res 742–757Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • B. Uzer
    • 1
    • 2
    Email author
  • F. Monte
    • 3
  • Kamal R. Awad
    • 3
    • 4
  • Pranesh B. Aswath
    • 3
  • Venu G. Varanasi
    • 3
  • D. Canadinç
    • 2
    • 5
  1. 1.Department of Mechanical EngineeringAbdullah Gul UniversityKayseriTurkey
  2. 2.Advanced Materials Group (AMG), Department of Mechanical EngineeringKoç UniversitySariyer, İstanbulTurkey
  3. 3.Department of Materials Science and EngineeringUniversity of Texas at ArlingtonArlingtonUSA
  4. 4.Refractories, Ceramics and Building Materials DepartmentNational Research CentreGizaEgypt
  5. 5.Koç University Surface Science and Technology Center (KUYTAM)Sariyer, İstanbulTurkey

Personalised recommendations