Skip to main content
  • 1452 Accesses

Abstract

Taking as background the fact that conservation laws in a single space variable are well-posed in the space of functions of bounded variation, while multidimensional systems enjoy short-time well-posedness in Sobolev spaces H s, we attempt to resolve the discrepancies between these two theories by exploring what can be said about stability of one-dimensional systems in L 2. We summarize some positive results for special cases, and also show by a conterexample that there is no straightforward way to resolve the difficulty.

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adimurthi, Ghoshal, S.S., Gowda, G.D.V.: L p stability for entropy solutions of scalar conservation laws with strict convex flux. J. Differ. Equ. 256, 3395–3416 (2014)

    Google Scholar 

  2. Brenner, P.: The Cauchy problem for symmetric hyperbolic systems in L p. Math. Scand. 19, 27–37 (1966)

    Article  MathSciNet  Google Scholar 

  3. Bressan, A.: Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem. Oxford University Press, Oxford (2000)

    Google Scholar 

  4. Dafermos, C.M.: Entropy and the stability of classical solutions of hyperbolic systems of conservation laws. In: Ruggeri, T. (ed.) Recent Mathematical Methods in Nonlinear Wave Propagation (Montecatini Terme, 1994), pp. 48–69. Springer, Berlin (1996)

    Google Scholar 

  5. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000)

    Google Scholar 

  6. Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18, 95–105 (1965)

    Article  MathSciNet  Google Scholar 

  7. Holmes, J., Keyfitz, B.L., Tığlay, F.: Nonuniform dependence on initial data for compressible gas dynamics: the Cauchy problem on \({\mathbb R}^2\). SIAM J. Math. An. (to appear)

    Google Scholar 

  8. Hopf, E.: The partial differential equation u t + uu x = μu xx. Commun. Pure Appl. Math. III, 201–230 (1950)

    Google Scholar 

  9. John, F.: Formation of singularities in one-dimensional nonlinear wave propagation. Commun. Pure Appl. Math. XXVII, 377–405 (1974)

    Article  MathSciNet  Google Scholar 

  10. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)

    Article  MathSciNet  Google Scholar 

  11. Keyfitz, B.L., Tığlay, F.: Nonuniform dependence on initial data for compressible gas dynamics: the periodic Cauchy problem. J. Differ. Equ. 263, 6494–6511 (2017)

    Article  MathSciNet  Google Scholar 

  12. Kružkov, S.N.: First-order quasilinear equations in several independent variables. Math. USSR-Sb. 10, 217–243 (1970)

    Article  Google Scholar 

  13. Lax, P.D.: Hyperbolic systems of conservation laws, II. Commun. Pure Appl. Math. X, 537–566 (1957)

    Google Scholar 

  14. Leger, N.: L 2 estimates for shock solutions of scalar conservation laws using the relative entropy method. Arch. Ration. Mech. Anal. 199, 761–778 (2011)

    Google Scholar 

  15. Leger, N., Vasseur, A.: Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-bv perturbations. Arch. Ration. Mech. Anal. 201, 271–302 (2011)

    Article  MathSciNet  Google Scholar 

  16. Leray, J., Ohya, Y.: Equations et systémes non-linéaires, hyperboliques non-stricts. Math. Ann. 170, 167–205 (1967)

    Google Scholar 

  17. Littman, W.: The wave operator and L p norms. J. Math. Mech. 12, 55–68 (1963)

    Google Scholar 

  18. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York (1984)

    Chapter  Google Scholar 

  19. Oleı̆nik, O.A.: Discontinuous solutions of nonlinear differential equations. Am. Math. Soc. Transl. (2) 26, 95–172 (1963)

    Google Scholar 

  20. Rauch, J.: BV estimates fail in most quasilinear hyperbolic systems in dimensions greater than one. Commun. Math. Phys. 106, 481–484 (1986)

    Article  MathSciNet  Google Scholar 

  21. Serre, D.: Systems of Conservation Laws. 1: Hyperbolicity, Entropies, Shock Waves. Cambridge University Press, Cambridge (1999). Translated from the French original by I. N. Sneddon

    Google Scholar 

  22. Serre, D., Vasseur, A.F.: L 2-type contraction for systems of conservation laws. J. Éc. Polytech. Math. 1, 1–28 (2014)

    Article  MathSciNet  Google Scholar 

  23. Taylor, M.E.: Partial Differential Equations III: Nonlinear Equations. Springer, New York (1996)

    Google Scholar 

  24. Texier, B., Zumbrun, K.: Entropy criteria and stability of extreme shocks: a remark on a paper of Leger and Vasseur. Proc. Am. Math. Soc. 143, 749–754 (2015)

    Article  MathSciNet  Google Scholar 

  25. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. Barth, Heidelberg (1995)

    Google Scholar 

Download references

Acknowledgements

In a different context, Feride Tığlay suggested the idea of looking for bounds of the form (17). We are indebted to her and to John Holmes for helpful conversations about this problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Lee Keyfitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keyfitz, B.L., Ying, H. (2018). Hyperbolic Conservation Laws and L2. In: Dick, J., Kuo, F., Woźniakowski, H. (eds) Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan. Springer, Cham. https://doi.org/10.1007/978-3-319-72456-0_31

Download citation

Publish with us

Policies and ethics