Advertisement

Homotopies for Connected Components of Algebraic Sets with Application to Computing Critical Sets

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10693)

Abstract

Given a polynomial system f, this article provides a general construction for homotopies that yield at least one point of each connected component on the set of solutions of \(f = 0\). This algorithmic approach is then used to compute a superset of the isolated points in the image of an algebraic set which arises in many applications, such as computing critical sets used in the decomposition of real algebraic sets. An example is presented which demonstrates the efficiency of this approach.

Keywords

Numerical algebraic geometry Homotopy continuation Projections 

AMS Subject Classification

65H10 68W30 14P05 

References

  1. 1.
    Aubry, P., Rouillier, F., Safey El Din, M.: Real solving for positive dimensional systems. J. Symbolic Comput. 34(6), 543–560 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bates, D.J., Hauenstein, J.D., Peterson, C., Sommese, A.J.: Numerical decomposition of the rank-deficiency set of a matrix of multivariate polynomials. In: Robbiano, L., Abbott, J. (eds.) Approximate Commutative Algebra. Texts and Monographs in Symbolic Computation (A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria), pp. 55–77. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-211-99314-9_2 CrossRefGoogle Scholar
  3. 3.
    Bates, D.J., Hauenstein, J.D., Peterson, C., Sommese, A.J.: A numerical local dimensions test for points on the solution set of a system of polynomial equations. SIAM J. Numer. Anal. 47(5), 3608–3623 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for numerical algebraic geometry. bertini.nd.edu
  5. 5.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. SIAM, Philadelphia (2013)Google Scholar
  6. 6.
    Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini_real: Software for one- and two-dimensional real algebraic sets. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 175–182. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44199-2_29 Google Scholar
  7. 7.
    Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini_real: Numerical decomposition of real algebraic curves and surfaces. ACM Trans. Math. Softw. 44(1), 10 (2017)CrossRefGoogle Scholar
  8. 8.
    Chern, S.: Characteristic classes of hermitian manifolds. Annals Math. 47(1), 85–121 (1946)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Draisma, J., Horobet, E., Ottaviani, G., Sturmfels, B., Thomas, R.R.: The Euclidean distance degree of an algebraic variety. Found. Comput. Math. 16(1), 99–149 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fulton, W.: Intersection Theory. Springer, Heidelberg (1998).  https://doi.org/10.1007/978-1-4612-1700-8 CrossRefzbMATHGoogle Scholar
  11. 11.
    Hauenstein, J.D.: Numerically computing real points on algebraic sets. Acta Appl. Math. 125(1), 105–119 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hauenstein, J.D., Sommese, A.J.: Membership tests for images of algebraic sets by linear projections. Appl. Math. Comput. 219(12), 6809–6818 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Regenerative cascade homotopies for solving polynomial systems. Appl. Math. Comput. 218(4), 1240–1246 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hauenstein, J.D., Wampler, C.W.: Isosingular sets and deflation. Found. Comp. Math. 13(3), 371–403 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hauenstein, J.D., Wampler, C.W.: Unification and extension of intersection algorithms in numerical algebraic geometry. Appl. Math. Comput. 293, 226–243 (2017)MathSciNetGoogle Scholar
  16. 16.
    Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comp. 64(212), 1541–1555 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Leykin, A.: Numerical primary decomposition. In: ISSAC 2008, pp. 165–172. ACM, New York (2008)Google Scholar
  18. 18.
    Lu, Y., Bates, D.J., Sommese, A.J., Wampler, C.W.: Finding all real points of a complex curve. Contemp. Math. 448, 183–205 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Morgan, A.P., Sommese, A.J.: Coefficient-parameter polynomial continuation. Appl. Math. Comput. 29(2), 123–160 (1989). Errata: Appl. Math. Comput. 51(207) (1992)Google Scholar
  20. 20.
    Morgan, A.P., Sommese, A.J.: A homotopy for solving general polynomial systems that respects \(m\)-homogeneous structures. Appl. Math. Comput. 24, 101–113 (1987)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Rouillier, F., Roy, M.-F., Safey El Din, M.: Finding at least one point in each connected component of a real algebraic set defined by a single equation. J. Complex. 16(4), 716–750 (2000)CrossRefzbMATHGoogle Scholar
  22. 22.
    Sommese, A.J., Verschelde, J.: Numerical homotopies to compute generic points on positive dimensional algebraic sets. J. Complex. 16(3), 572–602 (2000)CrossRefzbMATHGoogle Scholar
  23. 23.
    Sommese, A.J., Verschelde, J., Wampler, C.W.: Numerical irreducible decomposition using projections from points on the components. Contemp. Math. 286, 37–51 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sommese, A.J., Wampler, C.W.: Numerical algebraic geometry. In: The Mathematics of Numerical Analysis (Park City, UT, 1995). Lectures in Applied Mathematics, vol. 32, pp. 749–763. AMS, Providence, RI (1996)Google Scholar
  25. 25.
    Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)CrossRefzbMATHGoogle Scholar
  26. 26.
    Verschelde, J., Cools, R.: Symbolic homotopy construction. Appl. Algebra Eng. Commun. Comput. 4(3), 169–183 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wampler, C.W., Larson, B., Erdman, A.: A new mobility formula for spatial mechanisms. In: Proceedings of the DETC/Mechanisms and Robotics Conference. ASME (2007). paper DETC2007-35574Google Scholar
  28. 28.
    Wampler, C.W., Hauenstein, J.D., Sommese, A.J.: Mechanism mobility and a local dimension test. Mech. Mach. Theory 46(9), 1193–1206 (2011)CrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, D.: Elimination Methods. Springer, Heidelberg (2001).  https://doi.org/10.1007/978-3-7091-6202-6 CrossRefzbMATHGoogle Scholar
  30. 30.
    Wu, W., Reid, G.: Finding points on real solution components and applications to differential polynomial systems. In: ISSAC 2013, pp. 339–346. ACM, New York (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsColorado State UniversityFort CollinsUSA
  2. 2.Department of MathematicsUniversity of Wisconsin - Eau ClaireEau ClaireUSA
  3. 3.Department of Applied and Computational Mathematics and StatisticsUniversity of Notre DameNotre DameUSA

Personalised recommendations