Fast Chinese Remaindering in Practice

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10693)


The Chinese remainder theorem is a key tool for the design of efficient multi-modular algorithms. In this paper, we study the case when the moduli \(m_1, \ldots , m_{\ell }\) are fixed and can even be chosen by the user. If \(\ell \) is small or moderately large, then we show how to choose gentle moduli that allow for speedier Chinese remaindering. The multiplication of integer matrices is one typical application where we expect practical gains for various common matrix dimensions and bitsizes of the coefficients.


Chinese remainder theorem Algorithm Complexity Integer matrix multiplication 


  1. 1.
    Bajard, J.C., Kaihara, M.E., Plantard, T.: Selected RNS bases for modular multiplication. In: Proceedings of the 19th IEEE Symposium on Computer Arithmetic, pp. 25–32 (2009)Google Scholar
  2. 2.
    Bernstein, D.: Scaled remainder trees (2004).
  3. 3.
    Borodin, A., Moenck, R.T.: Fast modular transforms. J. Comput. Syst. Sci. 8, 366–386 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bostan, A., Lecerf, G., Schost, É.: Tellegen’s principle into practice. In: Proceedings of ISSAC 2003, pp. 37–44. ACM Press (2003)Google Scholar
  5. 5.
    Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of points. J. Complex. 21(4), 420–446 (2005). Festschrift for the 70th Birthday of Arnold SchönhageMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Doliskani, J., Giorgi, P., Lebreton, R., Schost, É.: Simultaneous conversions with the Residue Number System using linear algebra. Technical report, HAL (2016).
  8. 8.
    Fiduccia, C.M.: Polynomial evaluation via the division algorithm: the fast Fourier transform revisited. In: Rosenberg, A.L. (ed.) Fourth Annual ACM Symposium on Theory of Computing, pp. 88–93 (1972)Google Scholar
  9. 9.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge University Press, New York (2013)CrossRefzbMATHGoogle Scholar
  10. 10.
    van der Hoeven, J.: Faster Chinese remaindering. Technical report, HAL (2016).
  11. 11.
    van der Hoeven, J., Lecerf, G., Mourrain, B., et al.: Mathemagix (2002).
  12. 12.
    van der Hoeven, J., Lecerf, G., Quintin, G.: Modular SIMD arithmetic in Mathemagix. ACM Trans. Math. Softw. 43(1), 5:1–5:37 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Karatsuba, A., Ofman, J.: Multiplication of multidigit numbers on automata. Soviet Phys. Doklady 7, 595–596 (1963)Google Scholar
  14. 14.
    Moenck, R.T., Borodin, A.: Fast modular transforms via division. In: Thirteenth annual IEEE Symposium on Switching and Automata Theory, pp. 90–96, University of Maryland, College Park (1972)Google Scholar
  15. 15.
    The PARI Group, Bordeaux. PARI/GP (2012). Software.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratoire d’informatique, UMR 7161 CNRSPalaiseauFrance

Personalised recommendations