Advertisement

Certification Using Newton-Invariant Subspaces

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10693)

Abstract

For a square system of analytic equations, a Newton-invariant subspace is a set which contains the resulting point of a Newton iteration applied to each point in the subspace. For example, if the equations have real coefficients, then the set of real points form a Newton-invariant subspace. Starting with any point for which Newton’s method quadratically converges to a solution, this article uses Smale’s \(\alpha \)-theory to certifiably determine if the corresponding solution lies in a given Newton-invariant subspace or its complement. This approach generalizes the method developed in collaboration with F. Sottile for deciding the reality of the solution in the special case that the Newton iteration defines a real map. A description of the implementation in alphaCertified is presented along with examples.

Keywords

Newton’s method Certified solutions Alpha theory Real solutions Numerical algebraic geometry 

A.M.S. 2010 Mathematics Subject Classification

Primary 65G20 Secondary 65H10 14Q99 

Notes

Acknowledgments

The author would like to thank Charles Wampler for helpful discussions related to using isotropic coordinates in kinematics.

References

  1. 1.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for Numerical Algebraic Geometry. bertini.nd.edu
  2. 2.
    Björck, G., Fröberg, R.: A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclic \(n\)-roots. J. Symbolic Comput. 12(3), 329–336 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998).  https://doi.org/10.1007/978-1-4612-0701-6 CrossRefzbMATHGoogle Scholar
  4. 4.
    Bozóki, S., Lee, T.-L., Rónyai, L.: Seven mutually touching infinite cylinders. Comput. Geom. 48(2), 87–93 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dedieu, J.-P., Shub, M.: Newton’s method for overdetermined systems of equations. Math. Comput. 69(231), 1099–1115 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Griewank, A., Osborne, M.R.: Analysis of Newton’s method at irregular singularities. SIAM J. Numer. Anal. 20(4), 747–773 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Griffin, Z.A., Hauenstein, J.D.: Real solutions to systems of polynomial equations and parameter continuation. Adv. Geom. 15(2), 173–187 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hauenstein, J.D., Levandovskyy, V.: Certifying solutions to square systems of polynomial-exponential equations. J. Symbolic Comput. 79(3), 575–593 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hauenstein, J.D., Sottile, F.: Algorithm 921: alphaCertified: certifying solutions to polynomial systems. ACM TOMS 38(4), 28 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hauenstein J.D., Sottile, F.: alphaCertified: software for certifying solutions to polynomial systems. www.math.tamu.edu/~sottile/research/stories/alphaCertified
  11. 11.
    Lang, S.: Real Analysis, 2nd edn. Addison-Wesley Publishing Company Advanced Book Program, Reading (1983)zbMATHGoogle Scholar
  12. 12.
    Li, W.V., Wei, A.: On the expected number of zeros of a random harmnoic polynomial. Proc. Am. Math. Soc. 137(1), 195–204 (2009)CrossRefGoogle Scholar
  13. 13.
    Mehta, D., Hauenstein, J.D., Wales, D.J.: Certifying the potential energy landscape. J. Chem. Phys. 138(17), 171101 (2013)CrossRefGoogle Scholar
  14. 14.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Roth, B., Freudenstein, F.: Synthesis of path-generating mechanisms by numerical methods. ASME J. Eng. Ind. 85(3), 298–306 (1963)CrossRefGoogle Scholar
  16. 16.
    Shub, M., Smale, S.: Complexity of Bézout’s theorem. I. Geometric aspects. J. Am. Math. Soc. 6(2), 459–501 (1993)zbMATHGoogle Scholar
  17. 17.
    Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R.E., Gross, K.I., Martin, C.F. (eds.) The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics (Laramie, Wyo 1985), pp. 185–196. Springer, New York (1986).  https://doi.org/10.1007/978-1-4612-4984-9_13 CrossRefGoogle Scholar
  18. 18.
    Wampler, C.W., Morgan, A.P., Sommese, A.J.: Complete solution of the nine-point path synthesis problem for four-bar linkages. ASME J. Mech. Des. 114, 153–159 (1992)CrossRefGoogle Scholar
  19. 19.
    Wampler, C.W., Sommese, A.J.: Numerical algebraic geometry and algebraic kinematics. Acta Numer. 20, 469–567 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Applied and Computational Mathematics and StatisticsUniversity of Notre DameNotre DameUSA

Personalised recommendations