Advertisement

Automated Reasoning for Knot Semigroups and \(\pi \)-orbifold Groups of Knots

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10693)

Abstract

The paper continues the first author’s research which shows that automatic reasoning is an effective tool for establishing properties of algebraic constructions associated with knot diagrams. Previous research considered involutory quandles (also known as keis) and quandles. This paper applies automated reasoning to knot semigroups, recently introduced and studied by the second author, and \(\pi \)-orbifold groups of knots. We test two conjectures concerning knot semigroups (specifically, conjectures aiming to describe knot semigroups of diagrams of the trivial knot and knot semigroups of 4-plat knot diagrams) on a large number of examples. These experiments enable us to formulate one new conjecture. We discuss applications of our results to a classical problem of the knot theory, determining whether a knot diagram represents the trivial knot.

References

  1. 1.
    Birkhoff, G.: On the structure of abstract algebras. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 433–454. Cambridge University Press (1935)Google Scholar
  2. 2.
    Boileau, M., Zimmermann, B.: The \(\pi \)-orbifold group of a link. Mathematische Zeitschrift 200(2), 187–208 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Burde, G., Heusener, M., Zieschang, H.: Knots. De Gruyter, Berlin (2013)CrossRefzbMATHGoogle Scholar
  4. 4.
    Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building, vol. 31. Springer, Dordrecht (2013).  https://doi.org/10.1007/978-1-4020-2653-9 zbMATHGoogle Scholar
  5. 5.
    Elhamdadi, M., Nelson, S.: Quandles, vol. 74. American Mathematical Society, Providence (2015)zbMATHGoogle Scholar
  6. 6.
    Fish, A., Lisitsa, A.: Detecting unknots via equational reasoning, I: exploration. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 76–91. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08434-3_7 CrossRefGoogle Scholar
  7. 7.
    Fish, A., Lisitsa, A., Stanovský, D.: A combinatorial approach to knot recognition. In: Horne, R. (ed.) EGC 2015. CCIS, vol. 514, pp. 64–78. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25043-4_7 CrossRefGoogle Scholar
  8. 8.
    Fox, R.: A quick trip through knot theory. In: Fort, M.K. (ed.) Topology of Three-Manifolds. Prentice-Hall, Englewood Cliffs (1962)Google Scholar
  9. 9.
    Gilbert, N.D., Porter, T.: Knots and Surfaces. Oxford University Press, New York (1994)zbMATHGoogle Scholar
  10. 10.
    Huet, G., Oppen, D.C.: Equations and rewrite rules. In: Book, R.N. (ed.) Formal Language Theory: Perspectives and Open Problems, pp. 349–405. Academic Press, New York (1980)CrossRefGoogle Scholar
  11. 11.
    Joyce, D.: A classifying invariant of knots, the knot quandle. J. Pure Appl. Algebra 23(1), 37–65 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kauffman, L.H., Henrich, A.: Unknotting unknots. https://arxiv.org/abs/1006.4176
  13. 13.
    Kauffman, L.H., Lambropoulou, S.: Hard unknots and collapsing tangles. https://arxiv.org/abs/math/0601525v5
  14. 14.
    Kawauchi, A.: A Survey of Knot Theory. Birkhäuser, Basel (1996)zbMATHGoogle Scholar
  15. 15.
    Lackenby, M.: Upper bound on Reidemeister moves. Ann. Math. 182, 1–74 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Raymond-Lickorish, W.B.: An Introduction to Knot Theory, vol. 175. Springer, New York (1997).  https://doi.org/10.1007/978-1-4612-0691-0 CrossRefzbMATHGoogle Scholar
  17. 17.
    Livingston, C.: Knot Theory, vol. 24. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  18. 18.
    Manturov, V.: Knot Theory. CRC Press, Boca Raton (2004)CrossRefzbMATHGoogle Scholar
  19. 19.
    McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/mccune/prover9/
  20. 20.
    Morgan, J.W., Bass, H. (eds.): The Smith Conjecture. Elsevier, Amsterdam (1984)zbMATHGoogle Scholar
  21. 21.
    Murasugi, K.: Knot Theory and Its Applications. Springer, Boston (1996).  https://doi.org/10.1007/978-0-8176-4719-3_15 zbMATHGoogle Scholar
  22. 22.
    Ochiai, M.: Non-trivial projections of the trivial knot. http://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/99940
  23. 23.
    O’Hara, J.: Energy of knots and infinitesimal cross ratio. Geom. Topol. Monogr. 13, 421–445 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
  25. 25.
    Vernitski, A.: Describing semigroups with defining relations of the form xy = yz and yx = zy and connections with knot theory. Semigroup Forum 95(1), 66–82 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Winker, S.K.: Quandles, knot invariants, and the n-fold branched cover. Ph.D. thesis, University of Illinois at Chicago (1984)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.Department of Mathematical SciencesUniversity of EssexEssexUK

Personalised recommendations