Advertisement

On Real Roots Counting for Non-radical Parametric Ideals

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10693)

Abstract

An algorithm we have introduced has a great effect on quantifier elimination of a first order formula containing many equalities. When the parametric ideal generated by the underlying equalities is not radical, however, our algorithm tends to produce an unnecessarily complicated formula. In this short paper, we show a result concerning Hermitian quadratic forms. It enables us to improve our algorithm so that we can get a simple formula without any radical computation.

Keywords

Hermitian quadratic form Comprehensive Gröbner system Quantifier elimination 

References

  1. 1.
  2. 2.
    Fukasaku, R., Iwane, H., Sato, Y: Real quantifier elimination by computation of comprehensive Gröbner systems. In: Proceedings of International Symposium on Symbolic and Algebraic Computation, pp. 173–180, ACM-Press (2015)Google Scholar
  3. 3.
    Fukasaku, R., Iwane, H., Sato, Y.: On the implementation of CGS real QE. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 165–172. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42432-3_21 CrossRefGoogle Scholar
  4. 4.
    Fukasaku, R., Iwane, H., Sato, Y.: CGSQE/SyNRAC: a real quantifier elimination package based on the computation of comprehensive Gröbner systems. ACM Comm. Comput. Algebra 50(3), 101–104 (2016)CrossRefzbMATHGoogle Scholar
  5. 5.
    Pedersen, P., Roy, M.-F., Szpirglas, A.: Counting real zeros in the multivariate case. In: Eyssette, F., Galligo, A. (eds.) Computational Algebraic Geometry. PM, vol. 109, pp. 203–224. Birkhäuser Boston, Boston (1993).  https://doi.org/10.1007/978-1-4612-2752-6_15 CrossRefGoogle Scholar
  6. 6.
    Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 376–392. Springer, Vienna (1998).  https://doi.org/10.1007/978-3-7091-9459-1_20 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Tokyo University of ScienceTokyoJapan

Personalised recommendations