Virtual Theories – A Uniform Interface to Mathematical Knowledge Bases

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10693)


To support mathematical research, engineering, and education by computer systems, we need to deal with the differences between mathematical content collections and information systems available today. Unfortunately, these systems – ranging from Wikipedia to theorem prover libraries are usually only accessible via a dedicated web information system or a low-level API at the level of the raw database content. What we would want is a “programmatic, mathematical API” which would give access to the knowledge-bases programmatically via their mathematical constructions and properties.

This paper takes a step into this direction by interpreting large knowledge bases as OMDoc/MMT theories – modular representations of mathematical objects and their properties. For this, we generalize OMDoc/MMT theories to “virtual theories” – theories so big that they do not fit into main memory – and update its knowledge management algorithms so that they can work directly with objects stored in external knowledge bases. An additional technical contribution is the introduction of a codec system that bridges between low-level encodings in databases and the abstract construction of mathematical objects.



The authors gratefully acknowledge the fruitful discussions with other participants of work package WP6, in particular John Cremona on the LMFDB and Dennis Müller on early versions of the OMDoc/MMT-based integration. We acknowledge financial support from the OpenDreamKit Horizon 2020 European Research Infrastructures project (#676541).


  1. [Cre16]
    Cremona, J.: The L-functions and modular forms database project. Found. Comput. Math. 16(6), 1541–1553 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Deh+16]
    Dehaye, P.-O., et al.: Interoperability in the OpenDreamKit project: the Math-in-the-Middle approach. In: Kohlhase, M., Johansson, M., Miller, B., de Moura, L., Tompa, F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 117–131. Springer, Cham (2016). CrossRefGoogle Scholar
  3. [FGT92]
    Farmer, W.M., Guttman, J.D., Javier Thayer, F.: Little theories. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992). Google Scholar
  4. [Koh+17]
    Kohlhase, M., et al.: Knowledge-based interoperability for mathematical software systems. In: Blömer, J., Kutsia, T., Simos, D. (eds.) MACIS 2017. LNCS, vol. 10693, pp. 195–210. Springer, Cham (2017). Google Scholar
  5. [Koh06]
    Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents [Version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  6. [LK16]
    Luzhnica, E., Kohlhase, M.: Formula semantification and automated relation finding in the On-line Encyclopedia for integer sequences. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 467–475. Springer, Cham (2016). CrossRefGoogle Scholar
  7. [Lmf]
    LMFDB - API. Accessed 17 Sept 2017
  8. [LMFDB]
    The LMFDB Collaboration: The L-functions and modular forms database. Accessed 01 Feb 2016
  9. [MH] Active mathematics. Accessed 28 Jan 2014
  10. [MMT]
    MMT - Language and System for the Uniform Representation of Knowledge. Project web site. Accessed 30 Aug 2016
  11. [ODK]
    OpenDreamKit Open Digital Research Environment Toolkit for the Advancement of Mathematics. Accessed 21 May 2015
  12. [OEIS]
    OEIS Foundation Inc. (ed.): The On-line Encyclopedia of Integer Sequences. Accessed 28 May 2017
  13. [Rab12]
    Rabe, F.: A query language for formal mathematical libraries. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 143–158. Springer, Heidelberg (2012). arXiv:1204.4685 [cs.LO]CrossRefGoogle Scholar
  14. [Rab13]
    Rabe, F.: The MMT API: a generic MKM system. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 339–343. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  15. [RK13]
    Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230, 1–54 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Slo03]
    Sloane, N.J.A.: The On-line Encyclopedia of integer sequences. Not. AMS 50(8), 912 (2003)MathSciNetzbMATHGoogle Scholar
  17. [Wie17]
    Wiesing, T.: Enabling cross-system communication using virtual theories and QMT. Master’s thesis, Jacobs University Bremen, Bremen, Germany, August 2017.
  18. [Wik17]
    Wikipedia: Wolfram language – Wikipedia, the free Encyclopedia (2017). Accessed 09 Oct 2017
  19. [Wol]
    Wolfram-Alpha. Accessed 05 Jan 2013
  20. [LMFa]
    The LMFDB Collaboration: The L-functions and modular forms database. Accessed 27 Aug 2016

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.FAU Erlangen-NürnbergErlangenGermany
  2. 2.Jacobs University BremenBremenGermany

Personalised recommendations