Advertisement

Sparse Rational Function Interpolation with Finitely Many Values for the Coefficients

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10693)

Abstract

In this paper, we give new sparse interpolation algorithms for black box univariate and multivariate rational functions \(h=f/g\) whose coefficients are integers with an upper bound. The main idea is as follows: choose a proper integer \(\beta \) and let \(h(\beta ) = a/b\) with \(\gcd (a,b)=1\). Then f and g can be computed by solving the polynomial interpolation problems \(f(\beta )=ka\) and \(g(\beta )=ka\) for some unique integer k. Experimental results show that the univariate interpolation algorithm is almost optimal.

References

  1. 1.
    Cuyt, A., Lee, W.S.: Sparse interpolation of multivariate rational functions. Theor. Comput. Sci. 412(16), 1445–1456 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Grigoriev, D., Karpinski, M., Singer, M.F.: Computational complexity of sparse rational interpolation. SIAM J. Comput. 23(1), 1–11 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Huang, Q.-L., Gao, X.-S.: Sparse polynomial interpolation with finitely many values for the coefficients. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 196–209. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66320-3_15 CrossRefGoogle Scholar
  4. 4.
    Huang, Q.L., Gao, X.S.: Sparse rational function interpolation with finitely many values for the coefficients (2017). arXiv:1706.00914
  5. 5.
    Huang, Q.L., Gao, X.S.: Sparse interpolation of black-box multivariate polynomials using Kronecker type substitutions (2017). arXiv:1710.01301
  6. 6.
    Kaltofen, E.: Greatest common divisors of polynomials given by straight-line programs. J. ACM 35, 231–264 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kaltofen, E., Trager, B.: Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators. J. Symbolic Comput. 9, 301–320 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kaltofen, E., Yang, Z.: On exact and approximate interpolation of sparse rational functions. In: Proceedings of ISSAC 2007. ACM Press, pp. 203–210 (2007)Google Scholar
  9. 9.
    Kronecker, L.: Grundz\(\ddot{u}\)ge einer arithmetischen Theorie der algebraischen Gr\(\ddot{o}\)ssen. J. f\(\ddot{u}\)r die Reine und Angewandte Mathematik 92, 1–122 (1882)Google Scholar
  10. 10.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, New York (1999)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.KLMM, UCAS, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations