Advertisement

Integrating Algebraic and SAT Solvers

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10693)

Abstract

For solving systems of Boolean polynomials whose zeros are known to be contained in \(\mathbb {F}_2^n\), algebraic solvers such as the Boolean Border Basis Algorithm (BBBA) and SAT solvers use very different and possibly complementary methods to create new information. Based on suitable implementations of these solvers and conversion methods from Boolean polynomials to SAT clauses and back, we describe an automatic framework integrating the two solving techniques and exchanging newly found information between them. Using examples derived from cryptographic attacks, we present some initial experiments indicating the efficiency of this combination.

Keywords

Boolean polynomial Border Basis Algorithm SAT solving Cryptographic attack 

Notes

Acknowledgments

We would like to express our gratitude to Tobias Schubert for providing us with the source code of the SAT solver antom. This work was financially supported by the DFG project “Algebraische Fehlerangriffe” [KR 1907/6-1].

References

  1. 1.
    Bard, G., Courtois, N., Jefferson, C.: Efficient methods for conversion and solution of sparse systems of low-degree multivariate polynomials over GF(2) via SAT-solvers. In: IACR Cryptology ePrint Archive (2007). https://eprint.iacr.org/2007/024.pdf
  2. 2.
    Bebel, J., Yuen, H.: Hard SAT instances based on factoring. In: SAT Competition 2013: Solver and Benchmark Descriptions, University of Helsinki, p. 102 (2013)Google Scholar
  3. 3.
    Brickenstein, M.: Boolean Gröbner Bases: Theory, Algorithms and Applications. Logos Verlag, Berlin (2010)zbMATHGoogle Scholar
  4. 4.
    Burchard, J., Gay, M., Messeng Ekossono, A.S., Horáček, J., Becker, B., Schubert, T., Kreuzer, M., Polian, I.: AutoFault: towards automatic construction of algebraic fault attacks. In: Proceedings of Conference on Fault Diagnosis and Tolarence in Cryptography (FDTC 2017), Taipei (2017, to appear)Google Scholar
  5. 5.
    Burchard, J., Messeng Ekosonno, A.-S., Horáček, J., Gay, M., Becker, B., Schubert, T., Kreuzer, M., Polian, I.: Towards mixed structural-functional models for algebraic fault attacks on ciphers. In: Proceedings of International Verification and Security Workshop (IVSW 2017) (2017)Google Scholar
  6. 6.
    Condrat, C., Kalla, P.: A Gröbner basis approach to CNF-formulae preprocessing. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 618–631. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71209-1_48 CrossRefGoogle Scholar
  7. 7.
    Dreyer, A., Nguyen, T.H.: Improving Gröbner-based clause learning for SAT solving industrial sized Boolean problems. In: Young Researcher Symposium (YRS) (Kaiserslautern 2013), Fraunhofer ITWM, pp. 72–77 (2013)Google Scholar
  8. 8.
    Gay, M., Burchard, J., Horáček, J., Messeng Ekossono, A.S., Schubert, T., Becker, B., Kreuzer, M., Polian, I.: Small scale AES toolbox: algebraic and propositional formulas, circuit-implementations and fault equations. In: Conference on Trustworthy Manufacturing and Utilization of Secure Devices (TRUDEVICE 2016), Barcelona (2016)Google Scholar
  9. 9.
    Gaztanaga, I.: The Boost Interprocess Library, version 1.63.0. www.boost.org/doc/libs/1_63_0/doc/html/interprocess.html
  10. 10.
    Horáček, J., Kreuzer, M.: On conversions from CNF to ANF. In: 2th International Workshop on Satisfiability Checking and Symbolic Computation, SC-square, Kaiserslautern (2017)Google Scholar
  11. 11.
    Horáček, J., Kreuzer, M., Messeng Ekossono, A.S.: Computing Boolean border bases. In: Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2016), Timisoara, pp. 465–472. IEEE (2016)Google Scholar
  12. 12.
    Horáček, J., Kreuzer, M., Messeng Ekossono, A.S.: A signature based border basis algorithm. In: Conference on Algebraic Informatics, CAI, Kalamata (2017)Google Scholar
  13. 13.
    Jovanovic, P., Kreuzer, M.: Algebraic attacks using SAT-solvers. Groups Complex. Cryptol. 2, 247–259 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kehrein, A., Kreuzer, M.: Computing border bases. J. Pure Appl. Algebra 205(2), 279–295 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  16. 16.
    Schubert, T., Reimer, S.: Antom (2016). https://projects.informatik.uni-freiburg.de/projects/antom
  17. 17.
    Zengler, C., Küchlin, W.: Extending clause learning of SAT solvers with boolean Gröbner bases. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 293–302. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15274-0_26 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Informatics and MathematicsUniversity of PassauPassauGermany
  2. 2.Computer Architecture GroupAlbert-Ludwigs-University FreiburgFreiburgGermany

Personalised recommendations