Advertisement

Improving Enclosure of Interval Scalar Projection Operation

Conference paper
  • 395 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10693)

Abstract

We introduce interval scalar projection operation with tight interval enclosure. Our approach relies on the solution to non-convex optimization problem. We present an improved algorithm for computing interval scalar projection for 2-dimensional box intervals and compare to a simple algorithm based on natural interval extension method. Applications include automated verification of properties of geometric algorithms and computing Voronoi diagrams over inexact input data.

Keywords

Interval arithmetic Scalar projection Non-convex optimization Geometric algorithms verification Computational geometry Voronoi diagrams 

References

  1. 1.
    Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)CrossRefGoogle Scholar
  2. 2.
    Bauschke, H.H., Borwein, J.M.: Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79(3), 418–443 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Carrizosa, E., Hansen, P., Messine, F.: Improving interval analysis bounds by translations. J. Global Optim. 29(2), 157–172 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cheng, R., Xie, X., Yiu, M.L., Chen, J., Sun, L.: UV-diagram: a Voronoi diagram for uncertain data. In: 2010 IEEE 26th International Conference on Data Engineering (ICDE), pp. 796–807. IEEE (2010)Google Scholar
  5. 5.
    Daumas, M., Lester, D., Munoz, C.: Verified real number calculations: a library for interval arithmetic. IEEE Trans. Comput. 58(2), 226–237 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dykstra, R.L.: An algorithm for restricted least squares regression. J. Am. Stat. Assoc. 78(384), 837–842 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Khanban, A.A.: Basic algorithms in computational geometry with imprecise input. Ph.D. thesis, University of London (2005)Google Scholar
  8. 8.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Nedialkov, N.S., Kreinovich, V., Starks, S.A.: Interval arithmetic, affine arithmetic, Taylor series methods: why, what next? Numer. Algorithms 37(1), 325–336 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Neumaier, A.: Taylor forms–use and limits. Reliable Comput. 9(1), 43–79 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Neumaier, A.: Improving interval enclosures. Reliable Comput. (2009)Google Scholar
  12. 12.
    Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-55602-8_217 Google Scholar
  13. 13.
    Reem, D.: The geometric stability of Voronoi diagrams with respect to small changes of the sites. In: Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry, SoCG 2011, pp. 254–263. ACM (2011)Google Scholar
  14. 14.
    Seeger, A., Sossa, D.: Critical angles between two convex cones. TOP 24(1), 44–87 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Methods in Learning and Vision: Theory and Practice. Neural Information Processing. The MIT Press, Cambridge (2006)Google Scholar
  16. 16.
    Stoer, J., Witzgall, C.: Convexity and Optimization in Finite Dimensions I, vol. 163. Springer Science & Business Media, Heidelberg (2012)zbMATHGoogle Scholar
  17. 17.
    Stolfi, J., De Figueiredo, L.: An introduction to affine arithmetic. Trends Appl. Comput. Math. 4(3), 297–312 (2003)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Tenenhaus, M.: Canonical analysis of two convex polyhedral cones and applications. Psychometrika 53(4), 503–524 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wiedijk, F.: The Seventeen Provers of the World: Foreword by Dana S. Scott, vol. 3600. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  20. 20.
    Worley, S.: A cellular texture basis function. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, pp. 291–294. ACM (1996)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Gdańsk University of TechnologyGdańskPoland

Personalised recommendations