On Recurrence and Transience of Fractional RandomWalks in Lattices

  • Thomas Michelitsch
  • Bernard Collet
  • Alejandro Perez Riascos
  • Andrzej Nowakowski
  • Franck Nicolleau
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 89)


The study of random walks on networks has become a rapidly growing research field, last but not least driven by the increasing interest in the dynamics of online networks. In the development of fast(er) random motion based search strategies a key issue are first passage quantities: How long does it take a walker starting from a site p 0 to reach ‘by chance’ a site p for the first time? Further important are recurrence and transience features of a random walk: A random walker starting at p 0 will he ever reach site p (ever return to p 0)? How often a site is visited? Here we investigate Markovian random walks generated by fractional (Laplacian) generator matrices L\( \frac{\alpha }{2} \) 2 (0 < \( \alpha \) ≤2) where L stands for ‘simple’ Laplacian matrices. This walk we refer to as ‘Fractional Random Walk’ (FRW). In contrast to classical Pólya type walks where only local steps to next neighbor sites are possible, the FRW allows nonlocal long-range moves where a remarkably rich dynamics and new features arise. We analyze recurrence and transience features of the FRW on infinite d-dimensional simple cubic lattices. We deduce by means of lattice Green’s function (probability generating functions) the mean residence times (MRT) of the walker at preselected sites. For the infinite 1D lattice (infinite ring) we obtain for the transient regime (0 < \( \alpha \) < 1) closed form expressions for these characteristics. The lattice Green’s function on infinite lattices existing in the transient regime fulfills Riesz potential asymptotics being a landmark of anomalous diffusion, i.e. random motion (Lévy flights) where the step lengths are drawn from a Lévy \( \alpha \)-stable distribution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97Google Scholar
  2. Bénichou O, Loverdo C, Moreau M, Voituriez R (2011) Intermittent search strategies. Rev Mod Phys 83:81–129Google Scholar
  3. Blumenthal RM, Getoor RK, Ray DB (1961) On the distribution of first hits for the symmetric stable processes. Transactions of the American Mathematical Society 99(3):540–554Google Scholar
  4. Chechkin AV, Metzler R, Klafter J, Gonchar VY (2008) Introduction to the theory of lévy flights. In: Klages R, Radons G, Sokolov IM (eds) Anomalous Transport: Foundations and Applications, Wiley, pp 129–162Google Scholar
  5. Doyle PG, Laurie Snell J (1984) Random Walks and Electric Networks, Carus Mathematical Monographs, vol 22. Mathematical Association of AmericaGoogle Scholar
  6. Dybiec B, Gudowska-Nowak E, Barkai E, Dubkov AA (2017) Lévy flights versus Lévy walks in bounded domains. Phys Rev E 95(5):052,102Google Scholar
  7. Feller W (1950) An Introduction to Probability Theory and its Applications. John Wiley & Sons Inc., New York, LondonGoogle Scholar
  8. Ferraro M, Zaninetti L (2006) Mean number of visits to sites in Levy flights. Phys Rev E 73(5):057,102Google Scholar
  9. Getoor RK (1961) First passage times for symmetric stable processes in space. Transactions of the American Mathematical Society 101(1):75–90Google Scholar
  10. Gonçalves B, Perra N, Vespignani A (2011) Modeling users’ activity on twitter networks: Validation of dunbar’s number. PLOS ONE 6(8):e22,656Google Scholar
  11. Hudges BD (1995) Random Walks and Random Environments. Cambridge University Press, New YorkGoogle Scholar
  12. Hughes BD, Shlesinger MF (1982) Lattice dynamics, random walks, and nonintegral effective dimensionality. Journal of Mathematical Physics 23(9):1688–1692Google Scholar
  13. Kemeny JG, Laurie Snell J (1976) Finite Markov Chains. Springer, New York, Berlin, TokyoGoogle Scholar
  14. Klages R (2016) Search for food of birds, fish and insects. In: Bunde A, Caro J, Kaerger J, Vogl G (eds) Diffusive Spreading in Nature, Technology and Society, Springer, Berlin, pp 129–162Google Scholar
  15. Maugin GA (2017) Nonclassical Continuum Mechanics. SpringerGoogle Scholar
  16. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1):1–77Google Scholar
  17. Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. Journal of Physics A: Mathematical and General 37(31):R161–R208Google Scholar
  18. Metzler R, Koren T, van den Broek B, Wuite GJL, Lomholt MA (2009) And did he search for you, and could not find you? Journal of Physics A: Mathematical and Theoretical 42(43):434,005Google Scholar
  19. Michelitsch T, Collet BA, Riascos AP, Nowakowski AF, Nicolleau F (2017a) On recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic lattices. Journal of Physics A: Mathematical and Theoretical 50:505,004Google Scholar
  20. Michelitsch TM, Maugin GA, Derogar S, Rahman M (2014) A regularized representation of the fractional Laplacian in n dimensions and its relation to Weierstrass-Mandelbrot-type fractal functions. IMA Journal of Applied Mathematics 79(5):753–777Google Scholar
  21. Michelitsch TM, Collet B, Nowakowski AF, Nicolleau FCGA (2015) Fractional laplacian matrix on the finite periodic linear chain and its periodic Riesz fractional derivative continuum limit. Journal of Physics A: Mathematical and Theoretical 48(29):295,202Google Scholar
  22. Michelitsch TM, Collet B, Nowakowski AF, Nicolleau FCGA (2016) Lattice fractional laplacian and its continuum limit kernel on the finite cyclic chain. Chaos, Solitons & Fractals 82:38–47Google Scholar
  23. Michelitsch TM, Collet BA, Riascos AP, Nowakowski AF, Nicolleau FCGA (2017b) Fractional random walk lattice dynamics. Journal of Physics A: Mathematical and Theoretical 50(5):055,003Google Scholar
  24. Mieghem PV (2011) Graph Spectra for Complex Networks. Cambridge University Press, New York, NY, USAGoogle Scholar
  25. Montroll EW (1956) Random walks in multidimensional spaces, especially on periodic lattices. Journal of the Society for Industrial and Applied Mathematics 4(4):241–260Google Scholar
  26. Montroll EW, Weiss GH (1965) Random walks on lattices. II. Journal of Mathematical Physics 6(2):167–181Google Scholar
  27. Newman MEJ (2010) Networks: An Introduction. Oxford University Press, OxfordGoogle Scholar
  28. Noh JD, Rieger H (2004) Random Walks on Complex Networks. Physical Review Letters 92(11):118,701Google Scholar
  29. Palyulin VV, Chechkin AV, Metzler R (2014) Lévy flights do not always optimize random blind search for sparse targets. Proc Nat Acad Sci USA 111(8):2931–2936Google Scholar
  30. Palyulin VV, Chechkin AV, Klages R, Metzler R (2016) Search reliability and search efficiency of combined Lévy-Brownian motion: long relocations mingled with thorough local exploration. Journal of Physics A: Mathematical and Theoretical 49(39):394,002Google Scholar
  31. Pearson K (1905) The problem of the random walk. Nature 72(294):318–342Google Scholar
  32. Pólya G (1921) Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Mathematische Annalen 83:149–160Google Scholar
  33. Riascos AP, Mateos JL (2012) Long-range navigation on complex networks using Lévy random walks. Phys Rev E 86:056,110Google Scholar
  34. Riascos AP, Mateos JL (2014) Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights. Phys Rev E 90:032,809Google Scholar
  35. Riascos AP, Mateos JL (2015) Fractional diffusion on circulant networks: emergence of a dynamical small world. Journal of Statistical Mechanics: Theory and Experiment 2015(7):P07,015Google Scholar
  36. Riascos AP, Michelitsch TM, Collet B, Nowakowski AF, Nicolleau FCGA (2017) Random walks defined in terms bof functions of the laplacian matrix: Emergence of long-range transport on networks. in preparationGoogle Scholar
  37. Sato K (1999) Lévy processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, vol 68. Cambridge University PressGoogle Scholar
  38. Spitzer F (1976) Principles of Random Walks. Springer, HeidelbergGoogle Scholar
  39. Viswanathan GM, Raposo EP, da Luz MGE (2008) Lévy flights and superdiffusion in the context of biological encounters and random searches. Physics of Life Reviews 5(3):133–150Google Scholar
  40. Zoia A, Rosso A, Kardar M (2007) Fractional Laplacian in bounded domains. Phys Rev E 76(2):021,116Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Michelitsch
    • 1
  • Bernard Collet
    • 1
  • Alejandro Perez Riascos
    • 2
  • Andrzej Nowakowski
    • 3
  • Franck Nicolleau
    • 3
  1. 1.Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d’AlembertSorbonne UniversitéParisFrance
  2. 2.Department of Civil EngineeringUniversidad Mariana San Juan de PastoPastoColombia
  3. 3.Sheffield Fluid Mechanics Group, Department of Mechanical EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations