Skip to main content

Use and Abuse of the Method of Virtual Power in Generalized Continuum Mechanics and Thermodynamics

  • Chapter
  • First Online:
Generalized Models and Non-classical Approaches in Complex Materials 1

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 89))

  • 1598 Accesses

Abstract

The method of virtual power, put forward by Paul Germain and celebrated by Gérard A. Maugin, is used (and abused) in the present work in combination with continuum thermodynamics concepts in order to develop generalized continuum, phase field, higher order temperature and diffusion theories. The systematic and effective character of the method is illustrated in the case of gradient and micromorphic plasticity models. It is then tentatively applied to the introduction of temperature and concentration gradient effects in diffusion theories leading to generalized heat and mass diffusion equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aifantis E (1984) On the microstructural origin of certain inelastic models. Journal of Engineering Materials and Technology 106:326–330

    Google Scholar 

  • Altenbach H, Maugin GA, Erofeev V (2011) Mechanics of Generalized Continua, Advanced Structured Materials, vol 7. Springer, Heidelberg

    Google Scholar 

  • Ammar K, Appolaire B, Cailletaud G, Feyel F, Forest S (2009) Finite element formulation of a phase field model based on the concept of generalized stresses. Computational Materials Science 45:800–805

    Google Scholar 

  • Aslan O, Forest S (2011) The micromorphic versus phase field approach to gradient plasticity and damage with application to cracking in metal single crystals. In: de Borst R, Ramm E (eds) Multiscale Methods in Computational Mechanics, Lecture Notes in Applied and Computational Mechanics 55, Springer, pp 135–154

    Google Scholar 

  • Aslan O, Cordero NM, Gaubert A, Forest S (2011) Micromorphic approach to single crystal plasticity and damage. International Journal of Engineering Science 49:1311–1325

    Google Scholar 

  • Cahn J, Hilliard J (1958) Free energy of a nonuniform system. I. Interfacial free energy. The Journal of Chemical Physics 28:258–267

    Google Scholar 

  • Coleman B, Mizel J (1963) Thermodynamics and departures from Fourier’s law of heat conduction. Arch Rational Mech and Anal 13:245–261

    Google Scholar 

  • Coleman B, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Rational Mech and Anal 13:167–178

    Google Scholar 

  • Daher N, Maugin GA (1986) The method of virtual power in continuum mechanics application to media presenting singular surfaces and interfaces. Acta Mechanica 60:217–240

    Google Scholar 

  • dell’Isola F, Seppecher P (1995) The relationship between edge contact forces, double forces and intersticial working allowed by the principle of virtual power. CR Acad Sci Paris IIb 321:303–308

    Google Scholar 

  • dell’Isola F, Seppecher P, Madeo A (2012) How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach “à la D’Alembert”. Zeitschrift für Angewandte Mathematik und Physik 63:1119–1141

    Google Scholar 

  • Finel A, Le Bouar Y, Gaubert A, Salman U (2010) Phase field methods: Microstructures, mechanical properties and complexity. Comptes Rendus Physique 11:245–256

    Google Scholar 

  • Forest S (2008) The micromorphic approach to plasticity and diffusion. In: Jeulin D, Forest S (eds) Continuum Models and Discrete Systems 11, Proceedings of the international conference CMDS11, Les Presses de l’Ecole des Mines de Paris, Paris, France, pp 105–112

    Google Scholar 

  • Forest S (2009) The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE Journal of Engineering Mechanics 135:117–131

    Google Scholar 

  • Forest S (2016) Nonlinear regularisation operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 472(2188)

    Google Scholar 

  • Forest S, Aifantis EC (2010) Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. International Journal of Solids and Structures 47:3367–3376

    Google Scholar 

  • Forest S, Amestoy M (2008) Hypertemperature in thermoelastic solids. Comptes Rendus Mécanique 336:347–353

    Google Scholar 

  • Forest S, Bertram A (2011) Formulations of strain gradient plasticity. In: Altenbach H, Maugin GA, Erofeev V (eds) Mechanics of Generalized Continua, Advanced Structured Materials vol. 7, Springer, pp 137–150

    Google Scholar 

  • Forest S, Sab K (2012) Continuum stress gradient theory. Mechanics Research Communications 40:16–25

    Google Scholar 

  • Forest S, Sab K (2017) Finite-deformation second-order micromorphic theory and its relations to strain and stress gradient models. Mathematics and Mechanics of Solids

    Google Scholar 

  • Frémond M, Nedjar B (1996) Damage, gradient of damage and principle of virtual power. Int J Solids Structures 33:1083–1103

    Google Scholar 

  • Germain P (1973a) La méthode des puissances virtuelles en mécanique des milieux continus, première partie : théorie du second gradient. J de Mécanique 12:235–274

    Google Scholar 

  • Germain P (1973b) The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J Appl Math 25:556–575

    Google Scholar 

  • Germain P, Nguyen QS, Suquet P (1983) Continuum thermodynamics. Journal of Applied Mechanics 50:1010–1020

    Google Scholar 

  • Gurtin M (1996) Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92:178–192

    Google Scholar 

  • Gurtin M (2003) On a framework for small–deformation viscoplasticity: free energy, microforces, strain gradients. International Journal of Plasticity 19:47–90

    Google Scholar 

  • Gurtin M, Anand L (2009) Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of Aifantis and Fleck & Hutchinson and their generalization. Journal of the Mechanics and Physics of Solids 57:405–421

    Google Scholar 

  • Ireman P, Nguyen QS (2004) Using the gradients of temperature and internal parameters in continuum mechanics. CR Mécanique 332:249–255

    Google Scholar 

  • LiuW, Saanouni K, Forest S, Hu P (2017) The micromorphic approach to generalized heat equations. Journal of Non-Equilibrium Thermodynamics 42(4):327–358

    Google Scholar 

  • Maugin GA (1980) The method of virtual power in continuum mechanics: Application to coupled fields. Acta Mechanica 35:1–70

    Google Scholar 

  • Maugin GA (1990) Internal variables and dissipative structures. J Non–Equilib Thermodyn 15:173–192

    Google Scholar 

  • Maugin GA (1992) Thermomechanics of Plasticity and Fracture. Cambridge University Press

    Google Scholar 

  • Maugin GA (1999) Thermomechanics of Nonlinear Irreversible Behaviors. World Scientific

    Google Scholar 

  • Maugin GA (2006) On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Archives of Applied Mechanics 75:723–738

    Google Scholar 

  • Maugin GA (2013) The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool. Continuum Mechanics and Thermodynamics 25:127–146

    Google Scholar 

  • Maugin GA, Metrikine AV (eds) (2010) Mechanics of Generalized Continua - One Hundred Years After the Cosserats, Advances in Mechanics and Mathematics, vol 21. Springer, New York

    Google Scholar 

  • Maugin GA, Muschik W (1994) Thermodynamics with internal variables, Part I. General concepts. J Non-Equilib Thermodyn 19:217–249

    Google Scholar 

  • Mindlin R (1965) Second gradient of strain and surface–tension in linear elasticity. Int J Solids Structures 1:417–438

    Google Scholar 

  • Nguyen QS (2010a) Gradient thermodynamics and heat equations. Comptes Rendus Mécanique 338:321–326

    Google Scholar 

  • Nguyen QS (2010b) On standard dissipative gradient models. Annals of Solid and Structural Mechanics 1(2):79–86

    Google Scholar 

  • Nguyen QS (2016) Quasi-static responses and variational principles in gradient plasticity. Journal of the Mechanics and Physics of Solids 97:156–167

    Google Scholar 

  • Saanouni K, Hamed M (2013) Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects. International Journal of Solids and Structures 50:2289–2309

    Google Scholar 

  • Svendsen B (1999) On the thermodynamics of thermoelastic materials with additional scalar degrees of freedom. Continuum Mechanics and Thermodynamics 4:247–262

    Google Scholar 

  • Temizer I, Wriggers P (2010) A micromechanically motivated higher–order continuum formulation of linear thermal conduction. ZAMM 90:768–782

    Google Scholar 

  • Villani A, Busso E, Ammar K, Forest S, Geers M (2014) A fully coupled diffusional-mechanical formulation: numerical implementation, analytical validation, and effects of plasticity on equilibrium. Archive of Applied Mechanics 84:1647–1664

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Forest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Forest, S. (2018). Use and Abuse of the Method of Virtual Power in Generalized Continuum Mechanics and Thermodynamics. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 1. Advanced Structured Materials, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-319-72440-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72440-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72439-3

  • Online ISBN: 978-3-319-72440-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics