Skip to main content

Service-Oriented Processing and Analysis of Massive Point Clouds in Geoinformation Management

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

Today, landscapes, cities, and infrastructure networks are commonly captured at regular intervals using LiDAR or image-based remote sensing technologies. The resulting point clouds, representing digital snapshots of the reality, are used for a growing number of applications, such as urban development, environmental monitoring, and disaster management. Multi-temporal point clouds, i.e., 4D point clouds, result from scanning the same site at different points in time and open up new ways to automate common geoinformation management workflows, e.g., updating and maintaining existing geodata such as models of terrain, infrastructure, building, and vegetation. However, existing GIS are often limited by processing strategies and storage capabilities that generally do not scale for massive point clouds containing several terabytes of data. We demonstrate and discuss techniques to manage, process, analyze, and provide large-scale, distributed 4D point clouds. All techniques have been implemented in a system that follows service-oriented design principles, thus, maximizing its interoperability and allowing for a seamless integration into existing workflows and systems. A modular service-oriented processing pipeline is presented that uses out-of-core and GPU-based processing approaches to efficiently handle massive 4D point clouds and to reduce processing times significantly. With respect to the provision of analysis results, we present web-based visualization techniques that apply real-time rendering algorithms and suitable interaction metaphors. Hence, users can explore, inspect, and analyze arbitrary large and dense point clouds. The approach is evaluated based on several real-world applications and datasets featuring different densities and characteristics. Results show that it enables the management, processing, analysis, and distribution of massive 4D point clouds as required by a growing number of applications and systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Belgiu M, Tomljenovic I, Lampoltshammer TJ, Blaschke T, Höfle B (2014) Ontology-based classification of building types detected from airborne laser scanning data. Remote Sens 6(2):1347–1366

    Article  Google Scholar 

  • Berger M, Tagliasacchi A, Seversky L, Alliez P, Levine J, Sharf A, Silva C (2014) State of the art in surface reconstruction from point clouds. Eurographics Stars 1(1):161–185

    Google Scholar 

  • Boucheny C (2009) Interactive scientific visualization of large datasets: towards a perceptive-based approach. Ph.D. thesis, Université Joseph Fourier, Grenoble, France

    Google Scholar 

  • Cura R, Perret J, Paparoditis N (2017) A scalable and multi-purpose point cloud server (PCS) for easier and faster point cloud data management and processing. ISPRS J Photogrammetry Remote Sens 127:39–56

    Article  Google Scholar 

  • Discher S, Richter R, Döllner J (2017) Interactive and view-dependent see-through lenses for massive 3D point clouds. Adv in 3D Geoinf, pp 49–62

    Google Scholar 

  • Döllner J, Buchholz H, Nienhaus M, Kirsch F (2005) Illustrative visualization of 3D city models. Electron Imaging 2005:42–51

    Google Scholar 

  • Döllner J, Hagedorn B, Klimke J (2012) Server-based rendering of large 3D scenes for mobile devices using G-buffer cube maps. In: 17th international conference on 3D web technology, pp 97–100

    Google Scholar 

  • Eitel J, Höfle B, Vierling L, Abellán A, Asner G, Deems J, Glennie C, Joerg P, LeWinter A, Magney T, Mandlburger G (2016) Beyond 3-D: the new spectrum of lidar applications for earth and ecological sciences. Remote Sens Environ 186:372–392

    Article  Google Scholar 

  • Elmqvist N, Tsigas P (2008) A taxonomy of 3D occlusion management for visualization. IEEE Trans Visual Comput Graphics 14(5):1095–1109

    Article  Google Scholar 

  • Elseberg J, Borrmann D, Nüchter A (2013) One billion points in the cloud–an octree for efficient processing of 3D laser scans. ISPRS J Photogrammetry Remote Sens 76:76–88

    Article  Google Scholar 

  • Goswami P, Erol F, Mukhi R, Pajarola R, Gobbetti E (2013) An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kD-trees. The Vis Comput 29(1):69–83

    Article  Google Scholar 

  • Gross M, Pfister H (eds) (2011) Point-based graphics. Morgan Kaufmann, USA

    Google Scholar 

  • Hämmerle M, Höfle B, Fuchs J, Schröder-Ritzrau A, Vollweiler N, Frank N (2014) Comparison of kinect and terrestrial lidar capturing natural karst cave 3-D objects. IEEE Geosci Remote Sens Lett 11(11):1896–1900

    Article  Google Scholar 

  • Kang Z, Lu Z (2011) The change detection of building models using epochs of terrestrial point clouds. In: International workshop on multi-platform/multi-sensor remote sensing and mapping, pp 1–6

    Google Scholar 

  • Kersten TP, Przybilla HJ, Lindstaedt M, Tschirschwitz F, Misgaiski-Hass M (2016) Comparative geometrical investigations of hand-held scanning systems. ISPRS Archives, XLI-B5, pp 507–514

    Article  Google Scholar 

  • Klimke J, Hagedorn B, Döllner J (2013) A service-based concept for camera control in 3D geovirtual environments. In: Progress and new trends in 3D geoinformation sciences, pp 101–118

    Google Scholar 

  • Klimke J, Hagedorn B, Döllner J (2014) Scalable multi-platform distribution of spatial 3D contents. Int J 3-D Inf Model 3(3):35–49

    Article  Google Scholar 

  • Krämer M, Gutbell R (2015) A case study on 3D geospatial applications in the web using state-of-the-art WebGL frameworks. In: 20th international conference on 3D web technology, pp 189–197

    Google Scholar 

  • Langner T, Seifert D, Fischer B, Goehring D, Ganjineh T, Rojas R (2016) Traffic awareness driver assistance based on stereovision, eye-tracking, and head-up display. In: IEEE international conference on robotics and automation, pp 3167–3173

    Google Scholar 

  • Leberl F, Irschara A, Pock T, Meixner P, Gruber M, Scholz S, Wiechert A (2010) Point clouds: lidar versus 3D vision. Photogram Eng Remote Sens 76(10):1123–1134

    Article  Google Scholar 

  • Li W, Guo Q, Jakubowski M, Kelly M (2012) A new method for segmenting individual trees from the lidar point cloud. Photogram Eng Remote Sens 78(1):75–84

    Article  Google Scholar 

  • Limberger D, Fiedler C, Hahn S, Trapp M, Döllner J (2016a) Evaluation of sketchiness as a visual variable for 2.5D treemaps. In: 20th international conference information visualisation, pp 183–189

    Google Scholar 

  • Limberger D, Scheibel W, Lemme S, Döllner J (2016b) Dynamic 2.5D treemaps using declarative 3D on the web. In: 21st international conference on web 3D technology, pp 33–36

    Google Scholar 

  • Martinez-Rubi O, Verhoeven S, van Meersbergen M, Schütz M, van Oosterom P, Gonçalves R, Tijssen T (2015) Taming the beast: free and open-source massive point cloud web visualization. In: Capturing Reality Forum 2015

    Google Scholar 

  • Mueller M, Pross B (2015) OGC WPS 2.0 interface standard. Open Geospatial Consortium, USA

    Google Scholar 

  • Musialski P, Wonka P, Aliaga DG, Wimmer M, Gool LV, Purgathofer W (2013) A survey of urban reconstruction. Comput Graph Forum 32(6):146–177

    Article  Google Scholar 

  • Musliman IA, Rahman AA, Coors V (2008) Implementing 3D network analysis in 3D GIS. Int Arch ISPRS 37(part B):913–918

    Google Scholar 

  • Nebiker S, Bleisch S, Christen M (2010) Rich point clouds in virtual globes–a new paradigm in city modeling? Comput Environ Urban Syst 34(6):508–517

    Article  Google Scholar 

  • Oehlke C, Richter R, Döllner J (2015) Automatic detection and large-scale visualization of trees for digital landscapes and city models based on 3D point clouds. In: 16th conference on digital landscape architecture, pp 151–160

    Google Scholar 

  • Ostrowski S, Jozkow G, Toth C, Vander Jagt B (2014) Analysis of point cloud generation from UAS images. ISPRS Ann Photogram Remote Sens Spat Inf Sci 2(1):45–51

    Article  Google Scholar 

  • Pasewaldt S, Semmo A, Trapp M, Döllner J (2012) Towards comprehensible digital 3D maps. In: International symposium on service-oriented mapping, pp 261–276

    Google Scholar 

  • Paredes EG, Bóo M, Amor M, Bruguera JD, Döllner J (2012) Extended hybrid meshing algorithm for multiresolution terrain models. Int J Geogr Inf Sci 26(5):771–793

    Article  Google Scholar 

  • Pătrăucean V, Armeni I, Nahangi M, Yeung J, Brilakis I, Haas C (2015) State of research in automatic as-built modelling. Adv Eng Inform 29(2):162–171

    Article  Google Scholar 

  • Peters R, Ledoux H (2016) Robust approximation of the medial axis transform of LiDAR point clouds as a tool for visualization. Comput Geosci 90(A):123–133

    Article  Google Scholar 

  • Preiner R, Jeschke S, Wimmer M (2012) Auto splats: dynamic point cloud visualization on the GPU. In: Eurographics symposium on parallel graphics and visualization, pp 139–148

    Google Scholar 

  • Puente I, González-Jorge H, Martínez-Sánchez J, Arias P (2013) Review of mobile mapping and surveying technologies. Measurement 46(7):2127–2145

    Article  Google Scholar 

  • Rautenbach V, Coetzee S, Iwaniak A (2013) Orchestrating OGC web services to produce thematic maps in a spatial information infrastructure. Comput Environ Urban Syst 37:107–120

    Article  Google Scholar 

  • Remondino F, Menna F, Koutsoudis A, Chamzas C, El-Hakim S (2013a) Design and implement a reality-based 3D digitisation and modelling project. In: Digital heritage international congress 2013, pp 137–147

    Google Scholar 

  • Remondino F, Spera MG, Nocerino E, Menna F, Nex F, Gonizzi-Barsanti S (2013b) Dense image matching: comparisons and analyses. In: Digital Heritage International Congress, pp 47–54

    Google Scholar 

  • Richter R, Döllner J (2010) Out-of-core real-time visualization of massive 3D point clouds. In: 7th international conference on virtual reality, computer graphics, visualization and interaction in Africa, pp 121–128

    Google Scholar 

  • Richter R, Döllner J (2014) Concepts and techniques for integration, analysis and visualization of massive 3D point clouds. Comput Environ Urban Syst 45:114–124

    Article  Google Scholar 

  • Richter R, Behrens M, Döllner J (2013a) Object class segmentation of massive 3D point clouds of urban areas using point cloud topology. Int J Remote Sens 34(23):8408–8424

    Article  Google Scholar 

  • Richter R, Kyprianidis JE, Döllner J (2013b) Out-of-core GPU-based change detection in massive 3D point clouds. Trans GIS 17(5):724–741

    Google Scholar 

  • Richter R, Discher S, Döllner J (2015) Out-of-core visualization of classified 3D point clouds. In: 3D Geoinformation Science, pp 227–242

    Google Scholar 

  • Rothermel M, Wenzel K, Fritsch D, Haala N (2012) Sure: photogrammetric surface reconstruction from imagery. In: LC3D Workshop, Berlin, vol 8

    Google Scholar 

  • Rusu RB, Cousins S (2011) 3D is Here: point cloud library (PCL). In: IEEE international conference on robotics and automation, pp 1–4

    Google Scholar 

  • Rüther H, Held C, Bhurtha R, Schroeder R, Wessels S (2012) From point cloud to textured model, the Zamani laser scanning pipeline in heritage documentation. South Afr J Geomatics 1(1):44–59

    Google Scholar 

  • Schoedon A, Trapp M, Hollburg H, Döllner J (2016) Interactive web-based visualization for accessibility mapping of transportation networks. EuroVis 2016—Short papers

    Google Scholar 

  • Semmo A, Döllner J (2014) An interaction framework for level-of-abstraction visualization of 3D geovirtual environments. In: 2nd ACM SIGSPATIAL international workshop on interacting with maps, pp 43–49

    Google Scholar 

  • Semmo A, Trapp M, Jobst M, Döllner J (2015) Cartography-oriented design of 3D geospatial information visualization—overview and techniques. Cartographic J 52(2):95–106

    Article  Google Scholar 

  • Shreiner D, Sellers G, Kessenich JM, Licea-Kane BM (2013) OpenGL programming guide: the official guide to learning OpenGL, Version 4.3. Addison-Wesley Professional, USA

    Google Scholar 

  • Schütz M, Wimmer M (2015) High-quality point-based rendering using fast single-pass interpolation. In: Digital heritage, pp 369–372

    Google Scholar 

  • Sigg S, Fuchs R, Carnecky R, Peikert R (2012) Intelligent cutaway illustrations. In: IEEE Pacific visualization symposium, pp 185–192

    Google Scholar 

  • Stojanovic V, Richter R, Trapp M, Döllner J (2017) Comparative visualization of BIM geometry and corresponding point clouds. Int J Sustain Dev Plann 13(1):12–23

    Article  Google Scholar 

  • Storti D, Yurtoglu M (2015) CUDA for engineers: an introduction to high-performance parallel computing. Addison-Wesley Professional, USA

    Google Scholar 

  • Trapp M, Glander T, Buchholz H, Döllner J (2008) 3D generalization lenses for interactive focus + context visualization of virtual city models. In: 12th international conference information visualisation, pp 356–361

    Google Scholar 

  • Vaaraniemi M, Freidank M, Westermann R (2013) Enhancing the visibility of labels in 3D navigation maps. In: Progress and new trends in 3D geoinformation sciences, pp 23–40

    Google Scholar 

  • van Oosterom P, Martinez-Rubi O, Ivanova M, Horhammer M, Geringer D, Ravada S, Tijssen T, Kodde M, Gonçalves R (2015) Massive point cloud data management: design, implementation and execution of a point cloud benchmark. Comput Graph 49:92–125

    Article  Google Scholar 

  • van Oosterom P, Zlatanova S, Penninga F, Fendel E (eds) (2008) Advances in 3D geoinformation systems. Springer, Berlin

    Google Scholar 

  • Wang R, Qian X (2010) OpenSceneGraph 3.0: beginner’s guide. Packt Publishing, UK

    Google Scholar 

  • Würfel H, Trapp M, Limberger D, Döllner J (2015) Natural phenomena as metaphors for visualization of trend data in interactive software maps. Comput Graph Vis Comput 2015:69–76

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Federal Ministry of Education and Research (BMBF), Germany within the InnoProfile Transfer research group “4DnD-Vis” and the Research School on “Service-Oriented Systems Engineering” of the Hasso-Plattner-Institut. We would like to thank virtualcity SYSTEMS for providing datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Discher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Discher, S., Richter, R., Trapp, M., Döllner, J. (2019). Service-Oriented Processing and Analysis of Massive Point Clouds in Geoinformation Management. In: Döllner, J., Jobst, M., Schmitz, P. (eds) Service-Oriented Mapping. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-72434-8_2

Download citation

Publish with us

Policies and ethics