Datacubes: Towards Space/Time Analysis-Ready Data

  • Peter BaumannEmail author
  • Dimitar Misev
  • Vlad Merticariu
  • Bang Pham Huu
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Datacubes form an emerging paradigm in the quest for providing EO data ready for spatial and temporal analysis; this concept, which generalizes the concept of seamless maps from 2-D to n-D, is based on preprocessing incoming data so as to integrate all data form one sensor into one logical array, say 3-D x/y/t for image timeseries or 4-D x/y/z/t for weather forecasts. This enables spatial analysis (both horizontally and vertically) and multi-temporal analysis simultaneously. Adequate service interfaces enable “shipping code to the data” to avoid excessive data transport. In standardization, datacubes belong to the category of coverages as established by ISO and OGC. In this contribution we present the OGC datacube data and service model, the Coverage Implementation Schema (CIS) and the Web Coverage Service (WCS) with its datacube analytics language, Web Coverage Processing Service (WCPS) and put them in context with further related standards is provided. Finally, we discuss architectural details of datacube services by way of operational tool examples.


Datacube Coverage OGC CIS OGC WCS OGC WCPS ISO 19123 



Research is partially funded by European Commission EINFRA project EarthServer-2 and Federal Ministry of Food and Agriculture project BigPicture.


  1. Andrejev A, Risch T (2012) Scientific SPARQL: semantic web queries over scientific data. In: 3rd International ICDE workshop on data engineering meets the semantic web (DESWEB 2012). Arlington, USA, 1–5 Apr 2012, pp 5–10Google Scholar
  2. Andrejev A, Baumann P, Misev D, Risch T (2015) Spatio-temporal gridded data processing on the semantic web. In: 2015 IEEE international conference on Data Science and Data Intensive Systems (DSDIS 2015), December 11–13. Sydney, Australia, pp 38–45Google Scholar
  3. Baumann P (1994) On the management of multidimensional discrete data. VLDB J 4(3):401–444 (Special Issue on Spatial database systems)CrossRefGoogle Scholar
  4. Baumann P (2010) The OGC web coverage processing service (WCPS) standard. Geoinformatica 14(4):447–479CrossRefGoogle Scholar
  5. Baumann P (2017a) The datacube manifesto., seen 28 May 2017
  6. Baumann P (2017b) Web coverage service (WCS) interface standard—core, version 2.0. OGC document 09-110r4,\, visited 28 May 2017
  7. Baumann P (2017c) Web coverage processing service (WCPS), version 1.0. OGC document 08-068r2., seen 28 May 2017
  8. Baumann P (2017d) OGC coverages domain working group public wiki., seen 28 May 2017
  9. Baumann P, Merticariu V (2015) On the efficient evaluation of array joins. In: Proceedings of the workshop big data in the geo sciences (co-located with IEEE big data). Santa Clara, US, 29 Oct 2015Google Scholar
  10. Baumann P, Feyzabadi S, Jucovschi C (2010) Putting pixels in place: a storage layout language for scientific data. In: Proceedings of IEEE ICDM workshop on spatial and spatiotemporal data mining (SSTDM’10). Sydney, Australia, 14 Dec 2010 Google Scholar
  11. Baumann P, Brackin R, Owonibi M, Cutsworth T (2011) Towards standards-based, interoperable geo image processing services. In: Proceedings of Geoinformatik, vol 41. ifgiPrints, Münster, Germany, 15–17 June 2011Google Scholar
  12. Baumann P, Dumitru A, Merticariu V (2013) The array database that is not a database: file based array query answering in Rasdaman. In: Proceedings of the 13th international symposium on advances in spatial and temporal databases—(SSTD’2013). Munich, Germany, 21–23 Aug 2013CrossRefGoogle Scholar
  13. Baumann P, Hirschorn E, Maso J (2017) Coverage implementation schema, version 1.1. OGC document 09-146r6., visited 30 June 2017
  14. Baumann P, Rossi AP, Bell B, Clements O, Evans B, Hoenig H, Hogan P, Kakaletris G, Koltsida P, Mantovani S, Marco Figuera R, Merticariu V, Misev D, Pham Huu B, Siemen S, Wagemann J (2017b) Fostering cross-disciplinary earth science through datacube analytics. In: Mathieu PP, Aubrecht C (eds) Earth observation open science and innovation—changing the world one pixel at a time. International Space Science Institute (ISSI), (in print)Google Scholar
  15. Blaschka M, Sapia C, Höfling G, Dinter B (1998) Finding your way through multidimensional data models. in: DEXA workshop data warehouse design and OLAP technology (DWDOT’98). Vienna, Austria, 24–28 Aug 1998, pp 198–203Google Scholar
  16. Boulil K, Bimonte S, Pinet F (2015) Conceptual model for spatial data cubes: a UML profile and its automatic implementation. Comput Stand Interfaces 38(2015):113–132CrossRefGoogle Scholar
  17. Brizhinev D, Toyer S, Taylor K (2017) Publishing and using earth observation data with the RDF data cube and the discrete global grid system. In: W3C working group note, 28 Sept 2017., visited 28 May 2017
  18. Broering A, Stasch C, Echterhoff J (2017) OGC sensor observation service interface standard. OGC document 12-006., visited 28 May 2017
  19. Cheng Y, Rusu F (2015) Formal representation of the SS-DB benchmark and experimental evaluation in EXTASCID. Distrib Parallel Databases 33(3):277–317CrossRefGoogle Scholar
  20. CoverageJSON (2017)., visited 28 May 2017
  21. Cyganiak R, Reynolds D (2014) The RDF data cube vocabulary. W3C, 2014.
  22. Dumitru A, Merticariu V, Baumann P (2016) Array database scalability: intercontinental queries on petabyte datasets (system demonstration). In: Proceedings of the 28th international conference on Scientific and Statistical Database Management (SSDBM). Budapest, Hungary, 18–20 July 2016Google Scholar
  23. EarthServer (2017) EarthServer—big datacubes at your fingertips., visited 30 June 2017
  24. Furtado P, Baumann P (1999) Storage of multidimensional arrays based on arbitrary tiling. ICDE’99. Sydney, Australia, 23–26 Mar 1999Google Scholar
  25. Hirschorn E, Baumann P (2017) OGC testbed 11 referenceable grid harmonization engineering report. OGC document 15-065r1., visited 28 May 2017
  26. ISO (2004) Geographic information—schema for coverage geometry and functions. 19123Google Scholar
  27. ISO (2016) Geographic information—schema for coverage geometry and functions—part 2: coverage implementation schema. ISO New Work Item Proposal 19123-2Google Scholar
  28. ISO (2017) SQL 9075 Part 15: Multi-dimensional arrays (MDA). ISO Committee Draft 9075-15Google Scholar
  29. Karmas A, Tzotsos A, Karantzalos K (2015) Scalable geospatial web services through efficient, online and near real-time processing of earth observation data. In: Proceedings of the IEEE international conference on big data computing service and applicationsGoogle Scholar
  30. Liakos P, Koltsida P, Baumann P, Ioannidis Y, Delis A (2015) A distributed infrastructure for earth-science big data retrieval. Int J Coop Inf Syst 24(2)CrossRefGoogle Scholar
  31. Marco Figuera R, Pham Huu B, Minin M, Flahaut J, Halder A, Rossi AP (2017) Analyzing CRISM hyperspectral imagery using planetserver. Geophysical research abstracts, #14632Google Scholar
  32. MatLab (2017)., visited 28 May 2017
  33. Mueller M, Pross B (2017) WPS 2.0 interface standard corrigendum 1. OGC document 14-065., visited 28 May 2017
  34. OGC (2007) Topic 6—schema for coverage geometry and functions, version 7.0. OGC document 07-011, 2007Google Scholar
  35. OGC (2017) WCS 2.0 compliance test suite., visited 28 May 2017
  36. Open Street Map (2017)., visited 28 May 2017
  37. Pisarev A (2003) Mooshka: a system for the management of multidimensional gene expression data in situ. Inf Syst 28(4):269–285CrossRefGoogle Scholar
  38. R (2017), visited 28 May 2017
  39. RDA (2017) Array database assessment working group report., visited 28 May 2017
  40. Robin A (2017) OGC® SWE common data model encoding standard. OGC document 08-094r1., visited 28 May 2017
  41. Sarawagi S, Stonebraker M (1994) Efficient organization of large multidimensional arrays. In: Proceedings of the 10th international conference on data engineering (ICDE), Houston, TexasGoogle Scholar
  42. Strobl P, Baumann P, Lewis A, Szantoi Z, Killough B, Purss M, Craglia M, Nativi S, Held A, Dhu T (2017) The six faces of the data cube. In: Proceedings of the big data from space, Toulouse, France, 28–30 Nov 2017 (accepted)Google Scholar
  43. Tzotsos A, Karmas A (2017) A datacube approach to agro-geoinformatics. In: Proceedings of the 6th international conference on agro-geoinformatics (Agro-Geoinformatics2017), Fairfax, USA, 7–10 Aug 2017Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Peter Baumann
    • 1
    Email author
  • Dimitar Misev
    • 1
  • Vlad Merticariu
    • 1
  • Bang Pham Huu
    • 1
  1. 1.Jacobs University, rasdaman GmbHBremenGermany

Personalised recommendations