Introduction to Drug-Drug Interactions

  • Manjunath P. Pai
  • Jennifer J. Kiser
  • Paul O. Gubbins
  • Keith A. Rodvold
Chapter
Part of the Infectious Disease book series (ID)

Abstract

Over 1000 new molecular entities (NMEs) have been introduced into the marketplace since the end of World War II. These therapeutic innovations have contributed to an increase in life expectancy but have also increased the prevalence of polypharmacy and the risk for adverse drug-drug interactions. The economic burden associated with adverse drug events is estimated to exceed $100 billion in the United States alone. These adverse events are most often associated with chronic medications used to manage hypercholesterolemia, diabetes, asthma, and depression that are widely prescribed in more economically developed countries. Acute infections most often lead to the short-term prescription of antimicrobials that can increase the risk for adverse events and or therapeutic failure when co-prescribed with these agents. Likewise combination antimicrobial therapies used to manage chronic or deep-seated infections carry a high potential for drug-drug interactions. The large number of NMEs and continued influx of new agents limits the design of a comprehensive resource that can accurately predict the extent and clinical implications of pharmacokinetic and pharmacodynamic interactions. This chapter provides a broad overview of clinical pharmacology from the perspective of systems that influence absorption, distribution, metabolism, and excretion of drugs that can lead to pharmacokinetic drug interactions.

Keywords

New molecular entities Adverse drug events Software Absorption Distribution Metabolism Elimination Excretion Regulatory Pharmacokinetics Pharmacodynamics 

References

  1. 1.
    Roe S, Long R, King K (2016) Pharmacies miss half of dangerous drug combinations. Chicago Tribune, Chicago. Available from http://www.chicagotribune.com/news/watchdog/druginteractions/ct-drug-interactions-pharmacy-met-20161214-story.html. Accessed 15 Oct 2017
  2. 2.
    Long R, Roe S (2017) Illinois’ new pharmacy rules to improve consumer safety may start today. Chicago Tribune, Chicago. Available from http://www.chicagotribune.com/news/watchdog/druginteractions/ct-drug-interactions-rauner-rules-met-20170818-story.html. Accessed 15 Oct 2017
  3. 3.
    Wang Y, Eldridge N, Metersky ML, Verzier NR, Meehan TP, Pandolfi MM et al (2014) National trends in patient safety for four common conditions, 2005-2011. N Engl J Med 370(4):341–351CrossRefGoogle Scholar
  4. 4.
    Qato DM, Wilder J, Schumm LP, Gillet V, Alexander GC (2016) Changes in prescription and over-the-counter medication and dietary supplement use among older adults in the United States, 2005 vs 2011. JAMA Intern Med 176:473–482CrossRefGoogle Scholar
  5. 5.
    U.S. Department of Health and Human Services, Office of Disease Prevention and Health Promotion (2014) National action plan for adverse drug event prevention. Author, Washington, DCGoogle Scholar
  6. 6.
    Plank-Kiegele B, Burkle T, Muller F, Patapovas A, Sonst A, Pfistermeister B et al (2017) Data requirements for the correct identification of medication errors and adverse drug events in patients presenting at an emergency department. Methods Inf Med 56(4):276–282CrossRefGoogle Scholar
  7. 7.
    Johnson JA, Bootman JL (1995) Drug-related morbidity and mortality. A cost-of-illness model. Arch Intern Med 155(18):1949–1956CrossRefGoogle Scholar
  8. 8.
    Chen F, Hu ZY, Jia WW, Lu JT, Zhao YS (2014) Quantitative evaluation of drug-drug interaction potentials by in vivo information- guided prediction approach. Curr Drug Metab 15(8):761–766CrossRefGoogle Scholar
  9. 9.
    Varma MV, Pang KS, Isoherranen N, Zhao P (2015) Dealing with the complex drug-drug interactions: towards mechanistic models. Biopharm Drug Dispos 36(2):71–92CrossRefGoogle Scholar
  10. 10.
    Rinner C, Grossmann W, Sauter SK, Wolzt M, Gall W (2015) Effects of shared electronic health record systems on drug-drug interaction and duplication warning detection. Biomed Res Int 2015:380497CrossRefGoogle Scholar
  11. 11.
    Kinch MS, Haynesworth A, Kinch SL, Hoyer D (2014) An overview of FDA-approved new molecular entities: 1827-2013. Drug Discov Today 19(8):1033–1039CrossRefGoogle Scholar
  12. 12.
    Fung KW, Kapusnik-Uner J, Cunningham J, Higby-Baker S, Bodenreider O (2017) Comparison of three commercial knowledge bases for detection of drug-drug interactions in clinical decision support. J Am Med Inform Assoc 24(4):806–812CrossRefGoogle Scholar
  13. 13.
    De Clercq E, Li G (2016) Approved antiviral drugs over the past 50 years. Clin Microbiol Rev 29(3):695–747CrossRefGoogle Scholar
  14. 14.
    Seiple IB, Zhang Z, Jakubec P, Langlois-Mercier A, Wright PM, Hog DT et al (2016) A platform for the discovery of new macrolide antibiotics. Nature 533(7603):338–345CrossRefGoogle Scholar
  15. 15.
    Yan M, Baran PS (2016) Drug discovery: fighting evolution with chemical synthesis. Nature 533(7603):326–327CrossRefGoogle Scholar
  16. 16.
    Pai MP, Bertino JS Jr (2014) Tables of antimicrobial agent pharmacology. In: Mandell GLBJ, Dolin RL, Blaser M (eds) Principles and practice of infectious diseases, 8th edn. Elsevier, Philadelphia, PA, USAGoogle Scholar
  17. 17.
    Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24(1):71–109CrossRefGoogle Scholar
  18. 18.
    Mudie DM, Amidon GL, Amidon GE (2010) Physiological parameters for oral delivery and in vitro testing. Mol Pharm 7(5):1388–1405CrossRefGoogle Scholar
  19. 19.
    Al-Kassas R, Bansal M, Shaw J (2017) Nanosizing techniques for improving bioavailability of drugs. J Control Release 260:202–212CrossRefGoogle Scholar
  20. 20.
    Tatro DS (1972) Tetracycline-antacid interactions. JAMA 220(4):586CrossRefGoogle Scholar
  21. 21.
    Ogawa R, Echizen H (2011) Clinically significant drug interactions with antacids: an update. Drugs 71(14):1839–1864CrossRefGoogle Scholar
  22. 22.
    Laksitorini M, Prasasty VD, Kiptoo PK, Siahaan TJ (2014) Pathways and progress in improving drug delivery through the intestinal mucosa and blood-brain barriers. Ther Deliv 5(10):1143–1163CrossRefGoogle Scholar
  23. 23.
    Linnankoski J, Makela J, Palmgren J, Mauriala T, Vedin C, Ungell AL et al (2010) Paracellular porosity and pore size of the human intestinal epithelium in tissue and cell culture models. J Pharm Sci 99(4):2166–2175CrossRefGoogle Scholar
  24. 24.
    Matsson P, Doak BC, Over B, Kihlberg J (2016) Cell permeability beyond the rule of 5. Adv Drug Deliv Rev 101:42–61CrossRefGoogle Scholar
  25. 25.
    van Waterschoot RA, Schinkel AH (2011) A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacol Rev 63(2):390–410CrossRefGoogle Scholar
  26. 26.
    Caldwell J, Gardner I, Swales N (1995) An introduction to drug disposition: the basic principles of absorption, distribution, metabolism, and excretion. Toxicol Pathol 23(2):102–114CrossRefGoogle Scholar
  27. 27.
    Benet LZ, Izumi T, Zhang Y, Silverman JA, Wacher VJ (1999) Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. J Control Release 62(1–2):25–31CrossRefGoogle Scholar
  28. 28.
    Yang B, Smith DE (2013) Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and PepT1 knockout mice. Drug Metab Dispos 41(3):608–614CrossRefGoogle Scholar
  29. 29.
    Biegel A, Gebauer S, Hartrodt B, Brandsch M, Neubert K, Thondorf I (2005) Three-dimensional quantitative structure-activity relationship analyses of beta-lactam antibiotics and tripeptides as substrates of the mammalian H+/peptide cotransporter PEPT1. J Med Chem 48(13):4410–4419CrossRefGoogle Scholar
  30. 30.
    Sarin H (2010) Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res 2:14CrossRefGoogle Scholar
  31. 31.
    Schafer M, Schneider TR, Sheldrick GM (1996) Crystal structure of vancomycin. Structure 4(12):1509–1515CrossRefGoogle Scholar
  32. 32.
    Li MW, Mruk DD, Cheng CY (2012) Gap junctions and blood-tissue barriers. Adv Exp Med Biol 763:260–280PubMedPubMedCentralGoogle Scholar
  33. 33.
    Smith DA, Di L, Kerns EH (2010) The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 9(12):929–939CrossRefGoogle Scholar
  34. 34.
    Fischman AJ, Alpert NM, Livni E, Ray S, Sinclair I, Callahan RJ et al (1993) Pharmacokinetics of 18F-labeled fluconazole in healthy human subjects by positron emission tomography. Antimicrob Agents Chemother 37(6):1270–1277CrossRefGoogle Scholar
  35. 35.
    Debruyne D (1997) Clinical pharmacokinetics of fluconazole in superficial and systemic mycoses. Clin Pharmacokinet 33(1):52–77CrossRefGoogle Scholar
  36. 36.
    McElnay JC, D’Arcy PF (1983) Protein binding displacement interactions and their clinical importance. Drugs 25(5):495–513CrossRefGoogle Scholar
  37. 37.
    Toutain PL, Bousquet-Melou A (2004) Volumes of distribution. J Vet Pharmacol Ther 27(6):441–453CrossRefGoogle Scholar
  38. 38.
    Hamilton JA (1989) Medium-chain fatty acid binding to albumin and transfer to phospholipid bilayers. Proc Natl Acad Sci U S A 86(8):2663–2667CrossRefGoogle Scholar
  39. 39.
    Manallack DT, Prankerd RJ, Yuriev E, Oprea TI, Chalmers DK (2013) The significance of acid/base properties in drug discovery. Chem Soc Rev 42(2):485–496CrossRefGoogle Scholar
  40. 40.
    Obach RS, Lombardo F, Waters NJ (2008) Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos 36(7):1385–1405CrossRefGoogle Scholar
  41. 41.
    Smith DA, Beaumont K, Maurer TS, Di L (2015) Volume of distribution in drug design. J Med Chem 58(15):5691–5698CrossRefGoogle Scholar
  42. 42.
    Grover A, Benet LZ (2009) Effects of drug transporters on volume of distribution. AAPS J 11(2):250–261CrossRefGoogle Scholar
  43. 43.
    Santucci R, Fothergill H, Laugel V, Perville A, De Saint Martin A, Gerout AC et al (2010) The onset of acute oxcarbazepine toxicity related to prescription of clarithromycin in a child with refractory epilepsy. Br J Clin Pharmacol 69(3):314–316CrossRefGoogle Scholar
  44. 44.
    Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA et al (2010) Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci U S A 107(27):12369–12374CrossRefGoogle Scholar
  45. 45.
    Fagerholm U (2007) Prediction of human pharmacokinetics - renal metabolic and excretion clearance. J Pharm Pharmacol 59(11):1463–1471CrossRefGoogle Scholar
  46. 46.
    Brodie BB, Axelrod J, Cooper JR, Gaudette L, La Du BN, Mitoma C et al (1955) Detoxication of drugs and other foreign compounds by liver microsomes. Science 121(3147):603–604CrossRefGoogle Scholar
  47. 47.
    Charifson PS, Walters WP (2014) Acidic and basic drugs in medicinal chemistry: a perspective. J Med Chem 57(23):9701–9717CrossRefGoogle Scholar
  48. 48.
    Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138(1):103–141CrossRefGoogle Scholar
  49. 49.
    Ohkura K, Kawaguchi Y, Watanabe Y, Masubuchi Y, Shinohara Y, Hori H (2009) Flexible structure of cytochrome P450: promiscuity of ligand binding in the CYP3A4 heme pocket. Anticancer Res 29(3):935–942PubMedGoogle Scholar
  50. 50.
    Coughtrie MW (2015) Ontogeny of human conjugating enzymes. Drug Metab Lett 9(2):99–108CrossRefGoogle Scholar
  51. 51.
    Reith D, Medlicott NJ, Kumara De Silva R, Yang L, Hickling J, Zacharias M (2009) Simultaneous modelling of the Michaelis-Menten kinetics of paracetamol sulphation and glucuronidation. Clin Exp Pharmacol Physiol 36(1):35–42CrossRefGoogle Scholar
  52. 52.
    Walker K, Ginsberg G, Hattis D, Johns DO, Guyton KZ, Sonawane B (2009) Genetic polymorphism in N-Acetyltransferase [NAT]: population distribution of NAT1 and NAT2 activity. J Toxicol Environ Health B Crit Rev 12(5–6):440–472CrossRefGoogle Scholar
  53. 53.
    Nelson E (1964) Kinetics of the acetylation and excretion of sulfonamides and a comparison of two models. Antibiot Chemother 12:29–40CrossRefGoogle Scholar
  54. 54.
    Stettner M, Steinberger D, Hartmann CJ, Pabst T, Konta L, Hartung HP et al (2015) Isoniazid-induced polyneuropathy in a tuberculosis patient - implication for individual risk stratification with genotyping? Brain Behav 5(8):e00326CrossRefGoogle Scholar
  55. 55.
    Masereeuw R, Russel FG (2001) Mechanisms and clinical implications of renal drug excretion. Drug Metab Rev 33(3–4):299–351CrossRefGoogle Scholar
  56. 56.
    Barger AC, Herd JA (1971) The renal circulation. N Engl J Med 284(9):482–490CrossRefGoogle Scholar
  57. 57.
    Ivanyuk A, Livio F, Biollaz J, Buclin T (2017) Renal drug transporters and drug interactions. Clin Pharmacokinet 56(8):825–892CrossRefGoogle Scholar
  58. 58.
    Werko L, Ek J, Varnauskas E, Bucht H, Thomasson B, Eliasch H (1955) The relationship between renal blood flow, glomerular filtration rate and sodium excretion, cardiac output and pulmonary and systemic blood pressures in various heart disorders. Am Heart J 49(6):823–837CrossRefGoogle Scholar
  59. 59.
    Pai MP, Norenberg JP, Telepak RA, Sidney DS, Yang S (2005) Assessment of effective renal plasma flow, enzymuria, and cytokine release in healthy volunteers receiving a single dose of amphotericin B desoxycholate. Antimicrob Agents Chemother 49(9):3784–3788CrossRefGoogle Scholar
  60. 60.
    Burnell JM, Kirby WM (1951) Effectiveness of a new compound, benemid, in elevating serum penicillin concentrations. J Clin Invest 30(7):697–700CrossRefGoogle Scholar
  61. 61.
    Tanigawara Y (2000) Role of P-glycoprotein in drug disposition. Ther Drug Monit 22(1):137–140CrossRefGoogle Scholar
  62. 62.
    Klaassen CD, Cui JY (2015) Review: aechanisms of how the intestinal microbiota alters the effects of drugs and bile acids. Drug Metab Dispos 43(10):1505–1521CrossRefGoogle Scholar
  63. 63.
    Zhanel GG, Siemens S, Slayter K, Mandell L (1999) Antibiotic and oral contraceptive drug interactions: is there a need for concern? Can J Infect Dis 10(6):429–433CrossRefGoogle Scholar
  64. 64.
    U.S. Department of Health and Human Services, U.S. Food and Drug Administration (2015) Drug interactions & labeling. Washington, DC. Available from https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/default.htm. Accessed 15 Oct 2017
  65. 65.
    Jankovic SM (2014) Comparison of EMA and FDA guidelines for drug interactions: an overview. Clin Res Regul Aff 31:29–34CrossRefGoogle Scholar
  66. 66.
    Prucksaritanont T, Chu X, Gibson C, Cui D, Yee KL, Ballard J, Cabalu T, Hochman J (2013) Drug-drug interaction studies: regulatory guidance and an industry perspective. AAPS Journal 15:629–645CrossRefGoogle Scholar
  67. 67.
    Nagai N (2010) Drug interaction studies on new drug applications: current situations and regulatory views in Japan. Drug Metab Pharmacokinet 25(1):3–15CrossRefGoogle Scholar
  68. 68.
    Zhang L, Zhang YD, Zhao P, Huang SM (2009) Predicting drug-drug interactions: an FDA perspective. AAPS J 11(2):300–306CrossRefGoogle Scholar
  69. 69.
    Fowler S, Zhang H (2008) In vitro evaluation of reversible and irreversible cytochrome P450 inhibition: current status on methodologies and their utility for predicting drug-drug interactions. AAPS J 10(2):410–424CrossRefGoogle Scholar
  70. 70.
    Huang SM, Strong JM, Zhang L, Reynolds KS, Nallani S, Temple R et al (2008) New era in drug interaction evaluation: US food and drug administration update on CYP enzymes, transporters, and the guidance process. J Clin Pharmacol 48(6):662–670CrossRefGoogle Scholar
  71. 71.
    de Andres F, LL A (2016) Simultaneous determination of cytochrome P450 oxidation capacity in humans: a review on the phenotyping cocktail approach. Curr Pharm Biotechnol 17(13):1159–1180CrossRefGoogle Scholar
  72. 72.
    U.S. Department of Health and Human Services, U.S. Food and Drug Administration (2015) Drug interactions & labeling. Washington, DC. Available from https://www.accessdata.fda.gov/scripts/cder/daf/. Accessed 15 Oct 2017
  73. 73.
    Patel RI, Beckett RD (2016) Evaluation of resources for analyzing drug interactions. J Med Libr Assoc 104(4):290–295CrossRefGoogle Scholar
  74. 74.
    Liu S, Tang B, Chen Q, Wang X (2016) Drug-drug interaction extraction via convolutional neural networks. Comput Math Methods Med 2016:6918381PubMedPubMedCentralGoogle Scholar
  75. 75.
    Ayvaz S, Horn J, Hassanzadeh O, Zhu Q, Stan J, Tatonetti NP et al (2015) Toward a complete dataset of drug-drug interaction information from publicly available sources. J Biomed Inform 55:206–217CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Manjunath P. Pai
    • 1
  • Jennifer J. Kiser
    • 2
  • Paul O. Gubbins
    • 3
  • Keith A. Rodvold
    • 4
  1. 1.College of Pharmacy, University of MichiganAnn ArborUSA
  2. 2.Department of Pharmaceutical SciencesSkaggs School of Pharmacy and Pharmaceutical Sciences, University of ColoradoAuroraUSA
  3. 3.Division of Pharmacy Practice and AdministrationUMKC School of Pharmacy at MSU SpringfieldSpringfieldUSA
  4. 4.Colleges of Pharmacy and MedicineUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations