Skip to main content

Comparison of Different Centrality Measures to Find Influential Nodes in Complex Networks

  • Conference paper
  • First Online:
Security, Privacy, and Anonymity in Computation, Communication, and Storage (SpaCCS 2017)

Abstract

In this paper, we compare the performance of representative centrality measures, classical and up-to-date, on more real networks in various fields. With the aid of SIR information diffusion model to simulate the vertices’ influence in real networks, we apply the kendall’s tau correlation coefficient, distinguishability and robustness to test different centrality measures at the same level., to show the best application scenarios for certain measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  2. Brin, S., Page, L.: The anatomy of a largescale hypertextual web search engine. Int. Conf. World Wide Web 30(17), 107–117 (1998)

    Google Scholar 

  3. Chen, D.B., Lü, L.Y., Shang, M.S., et al.: Identifying influential nodes in complex networks. Phys. A Stat. Mech. Appl. 391(4), 1777–1787 (2012)

    Article  Google Scholar 

  4. Gao, S., Ma, J., Chen, Z.M., et al.: Ranking the spreading ability of nodes in complex networks based on local structure. Phys. A Stat. Mech. Appl. 403(6), 130–147 (2014)

    Article  Google Scholar 

  5. Cheng, J.J., Zhang, Y.C., Zhou, X., et al.: Extracting influential nodes in social networks on local weight aspect. Int. J. Interdisc. Telecommun. Netw. 8(2), 21–35 (2016)

    Google Scholar 

  6. Zhang, W., Xu, J., Li, Y.: A new method for identifying influential nodes and important edges in complex networks. Wuhan Univ. J. Nat. Sci. 21(3), 267–276 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Han, Z., Chen, Y., Liu, W. et al.: Social network node influence measuring method based on triangle structures. CN 105719190 A (2016)

    Google Scholar 

  8. Zhao, X., Liu, F., Wang, J., Li, T.: Evaluating influential nodes in social networks by local centrality with a coefficient. ISPRS Int. J. Geo-Inf. 6(2), 35 (2017)

    Article  Google Scholar 

  9. Saxena, C., Doja, M.N., Ahmad, T.: Neighborhood topology to discover influential nodes in a complex Network. In: Satapathy, S.C., Bhateja, V., Udgata, Siba K., Pattnaik, P.K. (eds.) Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications. AISC, vol. 515, pp. 323–332. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-3153-3_32

    Chapter  Google Scholar 

  10. Du, Y., et al.: A new method of identifying influential nodes in complex networks based on TOPSIS. Phys. A Stat. Mech. Appl. 399(4), 57–69 (2014)

    Article  Google Scholar 

  11. Hu, J., et al.: A modified weighted TOPSIS to identify influential nodes in complex networks. Phys. A Stat. Mech. Appl. 444, 73–85 (2016)

    Article  MathSciNet  Google Scholar 

  12. Bian, T., Hu, J., Deng, Y.: Identifying influential nodes in complex networks based on AHP. Phys. A Stat. Mech. Appl. 479(4), 422–436 (2017)

    Article  MathSciNet  Google Scholar 

  13. Yang, Y., Xie, G.: Efficient identification of node importance in social networks. Inf. Process. Manag. 52(5), 911–922 (2016). Pergamon Press, Inc

    Article  Google Scholar 

  14. Freeman, L.C.: A set of measures of centrality based upon betweenness. Sociometry 40(1), 35–41 (1977)

    Article  Google Scholar 

  15. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)

    Article  MATH  Google Scholar 

  16. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Article  Google Scholar 

  17. Gleiser, P.M., Danon, L.: Community structure in jazz. Adv. Complex Syst. 06(04), 565–573 (2003)

    Article  Google Scholar 

  18. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 74(3 pt 2), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  19. Mcauley, J., Leskovec, J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems, pp. 539–547 (2012)

    Google Scholar 

  20. Guimerà, R., Danon, L., Díaz-Guilera, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 065103 (2003)

    Article  Google Scholar 

  21. Xie, N.: Social Network Analysis of Blogs. University of Bristol, Bristol (2006)

    Google Scholar 

  22. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), 2 (2007)

    Article  Google Scholar 

  23. Boguñá, M., et al.: Models of social networks based on social distance attachment. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 70(2), 056122 (2004)

    Article  Google Scholar 

  24. Hopcroft, J., Lou, T., Tang, J.: Who will follow you back?: reciprocal relationship prediction. In: ACM Conference on Information and Knowledge Management, CIKM 2011, Glasgow, UK, pp. 1137–1146. ACM, October 2011

    Google Scholar 

  25. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39718-2_23

    Chapter  Google Scholar 

  26. Leskovec, J., Lang, K.J., Dasgupta, A., et al.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shu, P., Wang, W., Tang, M., et al.: Numerical identification of epidemic thresholds for susceptible-infected-recovered model on finite-size networks. Chaos 25(6) (2015)

    Google Scholar 

  28. Lü, L., et al.: The H-index of a network node and its relation to degree and coreness. Nat. Commun. 7, 10168 (2016)

    Article  Google Scholar 

  29. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.: Critical phenomena in complex networks. Rev. Mod. Phys. 80(4), 1275–1335 (2007)

    Article  Google Scholar 

  30. Newman, M.: Networks: An Introduction. OUP Oxford, Oxford (2010). vol. 327, no. 8, pp. 741–743

    Book  MATH  Google Scholar 

  31. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijun Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, F., Gu, Y., Fu, S., Wang, M., Guo, Y. (2017). Comparison of Different Centrality Measures to Find Influential Nodes in Complex Networks. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, KK. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2017. Lecture Notes in Computer Science(), vol 10658. Springer, Cham. https://doi.org/10.1007/978-3-319-72395-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72395-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72394-5

  • Online ISBN: 978-3-319-72395-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics