Skip to main content

Lengthening Unidimensional Continuous-Variable Quantum Key Distribution with Noiseless Linear Amplifier

  • Conference paper
  • First Online:
Security, Privacy, and Anonymity in Computation, Communication, and Storage (SpaCCS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10656))

  • 1729 Accesses

Abstract

In order to increase the maximum transmission distance and simplified implementation, we propose a continuous-variable quantum key distribution (CVQKD) protocol of entanglement in the middle, which the protocol is based on gaussian modulation of a single quadrature of the coherent states of light and the noiseless linear amplifier (NLA). This protocol uses the simplified unidimensional protocol to simplified implementation, and uses the NLA to increase the maximum transmission distance and tolerable excess noise in the presence of gaussian lossy and noisy channel. The simulation results show that the proposed unidimensional CVQKD protocol of entanglement in the middle with NLA obvious increased the maximum transmission distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ekert, A.K.: Quantum cryptography theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  MATH  Google Scholar 

  3. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  Google Scholar 

  4. Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8, 595–604 (2014)

    Article  Google Scholar 

  5. Diamanti, E., Lo, H.-K., Qi, B., Yuan, Z.: Practical challenges in quantum key distribution. arXiv preprint arXiv:1606.05853 (2016)

  6. Bennett, C.H., Brassard, G.: An update on quantum cryptography. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 475–480. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_39

    Chapter  Google Scholar 

  7. Garca-Patrn, R., Cerf, N.J.: Continuous-variable quantum key distribution protocols over noisy channels. Phys. Rev. Lett. 102, 130501 (2009)

    Article  Google Scholar 

  8. Zhao, Y., Qi, B., Ma, X., Lo, H.-K., Qian, L.: Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 070502 (2006)

    Article  Google Scholar 

  9. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. arXiv preprint quant-ph/0312016 (2003)

    Google Scholar 

  10. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  Google Scholar 

  11. Grosshans, F.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97, 190502 (2006)

    Article  Google Scholar 

  12. Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)

    Article  Google Scholar 

  13. Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81, 062343 (2010)

    Article  Google Scholar 

  14. Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114, 070501 (2015)

    Article  Google Scholar 

  15. Renner, R., Cirac, J.I.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102, 110504 (2009)

    Article  Google Scholar 

  16. Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., et al.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109, 100502 (2012)

    Article  Google Scholar 

  17. Leverrier, A., Renner, R., Cerf, N.J.: Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110, 030502 (2013)

    Article  Google Scholar 

  18. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7, 378–381 (2013)

    Article  Google Scholar 

  19. Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6 (2016)

    Google Scholar 

  20. Huang, D., Lin, D., Wang, C., Liu, W., Fang, S., Peng, J., et al.: Continuous-variable quantum key distribution with 1 Mbps secure key rate. Opt. Express 23, 17511–17519 (2015)

    Article  Google Scholar 

  21. Wang, C., Huang, D., Huang, P., Lin, D., Peng, J., Zeng, G.: 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel. Sci. Rep. 5 (2015)

    Google Scholar 

  22. Weedbrook, C., Pirandola, S., Garca-Patrn, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., et al.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  Google Scholar 

  23. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. arXiv preprint arXiv:1011.0105 (2010)

  24. Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., et al.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107, 110501 (2011)

    Article  Google Scholar 

  25. Waks, E., Zeevi, A., Yamamoto, Y.: Security of quantum key distribution with entangled photons against individual attacks. Phys. Rev. A 65, 052310 (2002)

    Article  Google Scholar 

  26. Ma, X., Fung, C.-H.F., Lo, H.-K.: Quantum key distribution with entangled photon sources. Phys. Rev. A 76, 012307 (2007)

    Article  Google Scholar 

  27. Weedbrook, C.: Continuous-variable quantum key distribution with entanglement in the middle. Phys. Rev. A 87, 022308 (2013)

    Article  Google Scholar 

  28. Ralph, T., Lund, A.: Nondeterministic noiseless linear amplification of quantum systems. In: AIP Conference Proceedings, pp. 155–160 (2009)

    Google Scholar 

  29. Walk, N., Lund, A.P., Ralph, T.C.: Nondeterministic noiseless amplification via non-symplectic phase space transformations. New J. Phys. 15, 073014 (2013)

    Article  Google Scholar 

  30. McMahon, N., Lund, A., Ralph, T.: Optimal architecture for a nondeterministic noiseless linear amplifier. Phys. Rev. A 89, 023846 (2014)

    Article  Google Scholar 

  31. Bernu, J., Armstrong, S., Symul, T., Ralph, T.C., Lam, P.K.: Theoretical analysis of an ideal noiseless linear amplifier for Einstein-Podolsky-Rosen entanglement distillation. J. Phys. B: At. Mol. Opt. Phys. 47, 215503 (2014)

    Article  Google Scholar 

  32. Blandino, R., Leverrier, A., Barbieri, M., Etesse, J., Grangier, P., Tualle-Brouri, R.: Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Phys. Rev. A 86, 012327 (2012)

    Article  Google Scholar 

  33. Usenko, V.C., Grosshans, F.: Unidimensional continuous-variable quantum key distribution. Phys. Rev. A 92, 062337 (2015)

    Article  MathSciNet  Google Scholar 

  34. Grosshans, F., Cerf, N.J., Wenger, J., Tualle-Brouri, R., Grangier, P.: Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. arXiv preprint quant-ph/0306141 (2003)

    Google Scholar 

  35. Serafini, A., Paris, M., Illuminati, F., De Siena, S.: Quantifying decoherence in continuous variable systems. J. Optics B Quant. Semiclassical Opt. 7, R19 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61379153, 61572529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Y., Liang, J., Guo, Y. (2017). Lengthening Unidimensional Continuous-Variable Quantum Key Distribution with Noiseless Linear Amplifier. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, KK. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2017. Lecture Notes in Computer Science(), vol 10656. Springer, Cham. https://doi.org/10.1007/978-3-319-72389-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72389-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72388-4

  • Online ISBN: 978-3-319-72389-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics