Skip to main content

Computer Simulations of the Structure of Nanoporous Carbons and Higher Density Phases of Carbon

  • Chapter
  • First Online:
Many-body Approaches at Different Scales

Abstract

The most stable form of solid carbon is graphite, a stacking of graphene layers in which the carbon atoms show \(sp^2\) hybridization which leads to strong intra-layer bonding. Diamond is a denser phase, obtained at high pressure. In diamond the carbon atoms show \(sp^3\) hybridization. Metastable solid carbon phases can be prepared also with lower density than graphite (in fact, densities lower than water); for instance the carbide-derived carbons. These are porous materials with a quite disordered structure. Atomistic computer simulations of carbide-derived carbons indicate that the pore walls can be viewed as curved and planar nanographene ribbons with numerous defects and open edges. Consequently, the hybridization of the carbon atoms in the porous carbons is \(sp^2\). Because of the high porosity and large specific surface area, nanoporous carbons find applications in gas adsorption, batteries and nanocatalysis, among others. We have performed computer simulations, employing large simulation cells and long simulation times, to reveal the details of the structure of the nanoporous carbons. In the dynamical simulations the interactions between the atoms are represented by empirical many-body potentials. We have also investigated the effect of the density on the structure of the disordered carbons and on the hybridization of the carbon atoms. At low densities, typical of the porous carbide-derived carbons formed experimentally, the hybridization is \(sp^2\). On the other hand, as the density of the disordered material increases, a growing fraction of atoms with \(sp^3\) hybridization appears.

Work dedicated to Professor N. H. March.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that the Tersoff potential gives a melting temperature for carbon of about 6000 K whereas the experimental value is about 4300 K. Therefore the temperatures given in this paper have been scaled by a 0.7 factor.

References

  1. W.A. Mohun, in Proceedings of the 4th Biennial Conference on Carbon, ed. by Y. Zhou (Pergamon Press, Oxford, 1960), pp. 443–453

    Google Scholar 

  2. Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J.E. Fischer, B. Yi, H.C. Foley, M.W. Barsoum, Nat. Mater. 2(9), 591 (2003). https://doi.org/10.1038/nmat957

  3. G. Yushin, R. Dash, J. Jagiello, J. Fischer, Y. Gogotsi, Adv. Funct. Mater. 16(17), 2288 (2006). https://doi.org/10.1002/adfm.200500830

  4. M.J. López, I. Cabria, J.A. Alonso, J. Chem. Phys. 135(10), 104706 (2011). https://doi.org/10.1063/1.3633690

  5. J.A. Alonso, I. Cabria, M.J. López, J. Mater. Res. 28(4), 589 (2013). https://doi.org/10.1557/jmr.2012.370

  6. C. de Tomás, I. Suarez-Martinez, F. Vallejos-Burgos, M.J. López, K. Kaneko, N.A. Marks, Carbon 119, 1 (2017). https://doi.org/10.1016/j.carbon.2017.04.004

  7. J.C. Angus, C.C. Hayman, Science 241(4868), 913 (1988). https://doi.org/10.1126/science.241.4868.913

  8. F.P. Bundy, W.A. Bassett, M.S. Weathers, R.J. Hemley, H.U. Mao, A.F. Goncharov, Carbon 34(2), 141 (1996). https://doi.org/10.1016/0008-6223(96)00170-4

  9. J. Narayan, A. Bhaumik, J. Appl. Phys. 118(21), 215303 (2015). https://doi.org/10.1063/1.4936595

  10. B. Stenhouse, P.J. Grout, N.H. March, J. Wenzel, Philos. Mag. 36(1), 129 (1977), Reprinted in Ref. [28]. https://doi.org/10.1080/00318087708244453

  11. B.J. Stenhouse, P.J. Grout, J. Non-Cryst. Solids 27(2), 247 (1978). https://doi.org/10.1016/0022-3093(78)90127-8

  12. D.F.R. Mildner, J. Carpenter, J. Non-Cryst. Solids 47(3), 391 (1982). https://doi.org/10.1016/0022-3093(82)90215-0

  13. C.A. Majid, J. Non-Cryst. Solids 57(1), 137 (1983). https://doi.org/10.1016/0022-3093(83)90416-7

  14. T. Noda, M. Inagaki, Bull. Chem. Soc. Jpn. 37(10), 1534 (1964). https://doi.org/10.1246/bcsj.37.1534

  15. E. Fitzer, K. Kochling, H.P. Boehm, H. Marsh, Pure Appl. Chem. 67, 473 (1995), (IUPAC Recommendations 1995). https://doi.org/10.1351/pac199567030473

  16. V.L. Deringer, G. Csányi, Phys. Rev. B 95, 094203 (2017). https://doi.org/10.1103/PhysRevB.95.094203

  17. C. de Tomas, I. Suarez-Martinez, N.A. Marks, Carbon 109, 681 (2016). https://doi.org/10.1016/j.carbon.2016.08.024

  18. J. Tersoff, Phys. Rev. B 37, 6991 (1988). https://doi.org/10.1103/PhysRevB.37.6991

  19. J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988). https://doi.org/10.1103/PhysRevLett.61.2879

  20. P.A. Marcos, J.A. Alonso, A. Rubio, M.J. López, Eur. Phys. J. D 6(2), 221 (1999). https://doi.org/10.1007/s100530050304

  21. K. Nordlund, J. Keinonen, T. Mattila, Phys. Rev. Lett. 77, 699 (1996). https://doi.org/10.1103/PhysRevLett.77.699

  22. M.J. López, I. Cabria, N.H. March, J.A. Alonso, Carbon 43(7), 1371 (2005). https://doi.org/10.1016/j.carbon.2005.01.006

  23. R.K. Dash, G. Yushin, Y. Gogotsi, Micropor. Mesopor. Mat. 86(1), 50 (2005). https://doi.org/10.1016/j.micromeso.2005.05.047

  24. A. Linares-Solano, M. Jordá-Beneyto, D.L.C.M. Kunowsky, F. Suárez-García, D. Cazorla-Amorós, in Carbon Materials: Theory and Practice, ed. by A. Terzyk, P. Gauden, P. Kowalczyk (Research Signpost, Kerala, India, 2008), pp. 245–281

    Google Scholar 

  25. Y. Gogotsi, R.K. Dash, G. Yushin, T. Yildirim, G. Laudisio, J.E. Fischer, J. Am. Chem. Soc. 127(46), 16006 (2005). https://doi.org/10.1021/ja0550529

  26. I. Cabria, M.J. López, J.A. Alonso, Carbon 45(13), 2649 (2007). https://doi.org/10.1016/j.carbon.2007.08.003

  27. I. Cabria, M.J. López, J.A. Alonso, Int. J. Hydrogen Energy 36(17), 10748 (2011), International Conference on Hydrogen Production (ICH2P)-2010. https://doi.org/10.1016/j.ijhydene.2011.05.125

  28. N.H. March, G.G.N. Angilella (eds.), Many-body Theory of Molecules, Clusters, and Condensed Phases (World Scientific, Singapore, 2009)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by MINECO of Spain (Grant MAT2014-54378-R) and Junta de Castilla y León (Grant VA050U14). The authors thankfully acknowledge the facilities provided by Centro de Proceso de Datos - Parque Científico of the University of Valladolid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio A. Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alonso, L., Alonso, J.A., López, M.J. (2018). Computer Simulations of the Structure of Nanoporous Carbons and Higher Density Phases of Carbon. In: Angilella, G., Amovilli, C. (eds) Many-body Approaches at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-72374-7_3

Download citation

Publish with us

Policies and ethics