Abstract
The quantum version of the Boltzmann equation remains still the basis of modern transport theories. Extensions become necessary for transient-time effects like the femtosecond response and for strongly correlated systems. At short time scales higher correlations have no time to develop yet and femto-second laser excitation of collective modes in semiconductors as well as quenches of cold atoms in optical lattices can be described even analytically by fluctuations of the meanfield. For plasma systems exposed to a sudden switching, analytical results are available from the time-dependent Fermi’s Golden Rule in good agreement with the results of two-time Green’s functions solving the Kadanoff and Baym equation. At later times when correlations develop, a kinetic equation of nonlocal and non-instantaneous character unifies the achievements of the transport in dense quantum gases with the Landau theory of quasiclassical transport in Fermi systems. The numerical solution is not more expensive than solving the Boltzmann equation since large cancellations in the off-shell motion appear which are hidden usually in non-Markovian behaviors. The quasiparticle drift of Landau’s equation is connected with a dissipation governed by a nonlocal and non-instant scattering integral in the spirit of Enskog corrections. These corrections are expressed in terms of shifts in space and time that characterize non-locality of the scattering process. In this way quantum transport is possible to recast into a quasi-classical picture. The balance equations for the density, momentum, energy and entropy include besides quasiparticle also the correlated two-particle contributions beyond the Landau theory. The medium effects on binary collisions are shown to mediate the latent heat, i.e., an energy conversion between correlation and thermal energy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
S. Trotzky, Y. Chen, A. Flesch, I.P. McCulloch, U. Schöllwock, J. Eisert, I. Bloch, Nat. Phys. 8(4), 325 (2012). https://doi.org/10.1038/nphys2232
R. Huber, F. Tauser, A. Brodschelm, A. Leitenstorfer, Phys. Status Solidi B 234(1), 207 (2002). https://doi.org/10.1002/1521-3951(200211)234:1<207::AID-PSSB207>3.0.CO;2-Z
R. Huber, C. Kübler, S. Tübel, A. Leitenstorfer, Q.T. Vu, H. Haug, F. Köhler, M.C. Amann, Phys. Rev. Lett. 94, 027401 (2005). https://doi.org/10.1103/PhysRevLett.94.027401
V.M. Axt, T. Kuhn, Rep. Prog. Phys. 67(4), 433 (2004). https://doi.org/10.1088/0034-4885/67/4/R01
K. Morawetz, P. Lipavský, M. Schreiber, Phys. Rev. B 72, 233203 (2005). https://doi.org/10.1103/PhysRevB.72.233203
K. Morawetz, Phys. Rev. B 90, 075303 (2014). https://doi.org/10.1103/PhysRevB.90.075303
L. Bányai, Q.T. Vu, B. Mieck, H. Haug, Phys. Rev. Lett. 81, 882 (1998). https://doi.org/10.1103/PhysRevLett.81.882
P. Gartner, L. Bányai, H. Haug, Phys. Rev. B 60, 14234 (1999). https://doi.org/10.1103/PhysRevB.60.14234
Q.T. Vu, H. Haug, Phys. Rev. B 62, 7179 (2000). https://doi.org/10.1103/PhysRevB.62.7179
M. Kira, S.W. Koch, Phys. Rev. Lett. 93, 076402 (2004). https://doi.org/10.1103/PhysRevLett.93.076402
L. Boltzmann, Wien. Ber. 66, 275 (1872)
S. Chapman, T.C. Cowling, The mathematical theory of nonuniform gases (Cambridge University Press, Cambridge, 1939)
D. Enskog, Kinetiske Theorie der Vorgänge in mäßig verdünnten Gasen (Almqvist & Wiksells, Uppsala, 1917)
J.G. Kirkwood, J. Chem. Phys. 14(3), 180 (1946). https://doi.org/10.1063/1.1724117
N.N. Bogoliubov, J. Phys. (USSR) 10, 256 (1946), Translated in [125]
I. Prigogine, Nonequilibrium Statistical Mechanics (Wiley, New York, 1962)
N.N. Bogolyubov, K.P. Gurov, Zh Eksp, Teor. Fiz. 17, 614 (1947)
H. Mori, S. Ono, Progr. Theor. Phys. 8(3), 327 (1952). https://doi.org/10.1143/ptp/8.3.327
G. Baym, C. Pethick, Landau Fermi Liquid Theory (Wiley, New York, 1991)
S. Chapman, T.C. Cowling, The Mathematical Theory of Nonuniform Gases, 3rd edn. (Cambridge University Press, Cambridge, 1990)
F.J. Alexander, A.L. Garcia, B.J. Alder, Phys. Rev. Lett. 74, 5212 (1995). https://doi.org/10.1103/PhysRevLett.74.5212
L. Waldmann, Z. Naturforsch. A 15, 19 (1960)
R.F. Snider, J. Math. Phys. 5(11), 1580 (1964). https://doi.org/10.1063/1.1931191
K. Bärwinkel, Z. Naturforsch. A 24, 38 (1969)
M.W. Thomas, R.F. Snider, J. Stat. Phys. 2(1), 61 (1970). https://doi.org/10.1007/BF01009711
R.F. Snider, B.C. Sanctuary, J. Chem. Phys. 55(4), 1555 (1971). https://doi.org/10.1063/1.1676279
J.C. Rainwater, R.F. Snider, J. Chem. Phys. 65(11), 4958 (1976). https://doi.org/10.1063/1.432972
R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanis (Wiley, New York, 1975)
J.A. McLennan, Introduction to nOnequilibrium Statistical Mechanics (Prentice Hall, Englewood Cliffs, 1989)
F. Laloë, J. Phys. (Paris) 50(14), 1851 (1989). https://doi.org/10.1051/jphys:0198900500140185100
P.J. Nacher, G. Tastevin, F. Laloë, J. Phys. (Paris) 50(14), 1907 (1989). https://doi.org/10.1051/jphys:0198900500140190700
D. Loss, J. Stat. Phys. 61(1), 467 (1990). https://doi.org/10.1007/BF01013976
M. De Haan, Physica A 170(3), 571 (1991). https://doi.org/10.1016/0378-4371(91)90007-Y
F. Laloë, W.J. Mullin, J. Stat. Phys. 59(3), 725 (1990). https://doi.org/10.1007/BF01025848
P.J. Nacher, G. Tastevin, F. Laloë, Ann. Phys. (Berlin) 503(1–3), 149 (1991). https://doi.org/10.1002/andp.19915030114
P.J. Nacher, G. Tastevin, F. Laloë, J. Phys. I (Paris) 1(2), 181 (1991). https://doi.org/10.1051/jp1:1991124
R.F. Snider, J. Stat. Phys. 80(5), 1085 (1995). https://doi.org/10.1007/BF02179865
R.F. Snider, W.J. Mullin, F. Laloë, Physica A 218(1), 155 (1995). https://doi.org/10.1016/0378-4371(95)00124-P
V. Špička, P. Lipavský, K. Morawetz, Phys. Rev. B 55, 5084 (1997). https://doi.org/10.1103/PhysRevB.55.5084
V. Špička, P. Lipavský, K. Morawetz, Phys. Rev. B 55, 5095 (1997). https://doi.org/10.1103/PhysRevB.55.5095
V. Špička, P. Lipavský, K. Morawetz, Phys. Lett. A 240(3), 160 (1998). https://doi.org/10.1016/S0375-9601(98)00061-9
P. Lipavský, K. Morawetz, V. Špička, Ann. Phys. Fr. 26(1), 1 (2001). https://doi.org/10.1051/anphys:200101001
K. Morawetz, P. Lipavský, V. Špička, Ann. Phys. 294(2), 135 (2001). https://doi.org/10.1006/aphy.2001.6197
K. Morawetz, P. Lipavský, V. Špička, N.H. Kwong, Phys. Rev. C 59, 3052 (1999). https://doi.org/10.1103/PhysRevC.59.3052
I.B. Levinson, Zh. Eksp. Teor. Fiz. 57, 660 (1969), [Sov. Phys. JETP 30, 362 (1970)]
H.S. Köhler, K. Morawetz, Phys. Rev. C 64, 024613 (2001). https://doi.org/10.1103/PhysRevC.64.024613
K. Morawetz, V. Špička, P. Lipavský, Phys. Lett. A 246(3), 311 (1998). https://doi.org/10.1016/S0375-9601(98)00356-9
G. Zwicknagel, C. Toeppfer, P.G. Reinhard, in Physics of Strongly Coupled Plasmas, ed. by W.D. Kraeft, M. Schlanges, H. Haberland, T. Bornath (World Scientific, Singapore, 1995), p. 45
K. Morawetz, H.S. Köhler, Eur. Phys. J. A 4(3), 291 (1999). https://doi.org/10.1007/s100500050233
A. Flesch, M. Cramer, I.P. McCulloch, U. Schollwöck, J. Eisert, Phys. Rev. A 78, 033608 (2008). https://doi.org/10.1103/PhysRevA.78.033608
N. Syassen, D.M. Bauer, M. Lettner, T. Volz, D. Dietze, J.J. García-Ripoll, J.I. Cirac, G. Rempe, S. Dürr, Science 320(5881), 1329 (2008). https://doi.org/10.1126/science.1155309
N.D. Mermin, Phys. Rev. B 1, 2362 (1970). https://doi.org/10.1103/PhysRevB.1.2362
A.K. Das, J. Phys. F 5(11), 2035 (1975). https://doi.org/10.1088/0305-4608/5/11/015
K. Morawetz, Phys. Rev. E 88, 022148 (2013). https://doi.org/10.1103/PhysRevE.88.022148
W. Jones, N.H. March, Theoretical Solid-State Physics. Non-equilibrium and Disorder, vol. 2 (Dover, New York, 1986). ISBN 9780486650166
K. El Sayed, S. Schuster, H. Haug, F. Herzel, K. Henneberger, Phys. Rev. B 49, 7337 (1994). https://doi.org/10.1103/PhysRevB.49.7337
K. Morawetz (ed.), Nonequilibrium Physics at Short Time Scales (Formation of Correlations (Springer, Berlin, 2004)
R.A. Craig, Ann. Phys. 40(3), 416 (1966). https://doi.org/10.1016/0003-4916(66)90143-6
B. Bezzerides, D.F. DuBois, Phys. Rev. 168, 233 (1968). https://doi.org/10.1103/PhysRev.168.233
H. Stolz, R. Zimmermann, Phys. Status Solidi B 94(1), 135 (1979). https://doi.org/10.1002/pssb.2220940114
D. Kremp, W.D. Kraeft, A.J.D. Lambert, Physica A 127(1), 72 (1984). https://doi.org/10.1016/0378-4371(84)90120-1
M. Schmidt, G. Röpke, Phys. Status Solidi B 139(2), 441 (1987). https://doi.org/10.1002/pssb.2221390212
H.S. Köhler, R. Malfliet, Phys. Rev. C 48, 1034 (1993). https://doi.org/10.1103/PhysRevC.48.1034
V. Špička, P. Lipavský, Phys. Rev. B 52, 14615 (1995). https://doi.org/10.1103/PhysRevB.52.14615
K. Bärwinkel, in Proceedings of the 14th International Symposium on Rarefied Gas Dynamics, ed. by H. Oguchi (University of Tokyo Press, Tokyo, 1984). ISBN 9784130681094
R.F. Snider, J. Stat. Phys. 63(3), 707 (1991). https://doi.org/10.1007/BF01029207
N.H. March, R. Santamaria, Int. J. Quantum Chem. 39(4), 585 (1991). https://doi.org/10.1002/qua.560390405
N.H. March, Phys. Rev. A 56, 1025 (1997). https://doi.org/10.1103/PhysRevA.56.1025
H.S. Köhler, Phys. Rev. C 51, 3232 (1995). https://doi.org/10.1103/PhysRevC.51.3232
M. Schmidt, G. Röpke, H. Schulz, Ann. Phys. 202(1), 57 (1990). https://doi.org/10.1016/0003-4916(90)90340-T
K. Morawetz, G. Roepke, Phys. Rev. E 51, 4246 (1995). https://doi.org/10.1103/PhysRevE.51.4246
P. Lipavský, V. Špička, K. Morawetz, Phys. Rev. E 59, R1291 (1999). https://doi.org/10.1103/PhysRevE.59.R1291
V. Špička, K. Morawetz, P. Lipavský, Phys. Rev. E 64, 046107 (2001). https://doi.org/10.1103/PhysRevE.64.046107
K. Morawetz, V. Špička, P. Lipavský, G. Kortemeyer, C. Kuhrts, R. Nebauer, Phys. Rev. Lett. 82, 3767 (1999). https://doi.org/10.1103/PhysRevLett.82.3767
K. Morawetz, Phys. Rev. C 62, 044606 (2000). https://doi.org/10.1103/PhysRevC.62.044606
K. Morawetz, M. Płoszajczak, V.D. Toneev, Phys. Rev. C 62, 064602 (2000). https://doi.org/10.1103/PhysRevC.62.064602
K. Morawetz, P. Lipavský, J. Normand, D. Cussol, J. Colin, B. Tamain, Phys. Rev. C 63, 034619 (2001). https://doi.org/10.1103/PhysRevC.63.034619
K. Morawetz, Phys. Rev. E 96, 032106 (2017). https://doi.org/10.1103/PhysRevE.96.032106
K. Morawetz, Interacting Systems far From Equilibrium (Quantum Kinetic Theory (Oxford University Press, Oxford, 2017)
J. Tõke, B. Lott, S.P. Baldwin, B.M. Quednau, W.U. Schröder, L.G. Sobotka, J. Barreto, R.J. Charity, D.G. Sarantites, D.W. Stracener, R.T. de Souza, Phys. Rev. Lett. 75, 2920 (1995). https://doi.org/10.1103/PhysRevLett.75.2920
S.P. Baldwin, B. Lott, B.M. Szabo, B.M. Quednau, W.U. Schröder, J. Tõke, L.G. Sobotka, J. Barreto, R.J. Charity, L. Gallamore, D.G. Sarantites, D.W. Stracener, R.T. de Souza, Phys. Rev. Lett. 74, 1299 (1995). https://doi.org/10.1103/PhysRevLett.74.1299
W. Skulski, B. Djerroud, D.K. Agnihotri, S.P. Baldwin, J. Tõke, X. Zhao, W.U. Schröder, L.G. Sobotka, R.J. Charity, J. Dempsey, D.G. Sarantites, B. Lott, W. Loveland, K. Aleklett, Phys. Rev. C 53, R2594 (1996). https://doi.org/10.1103/PhysRevC.53.R2594
S. Chattopadhyay, Phys. Rev. C 52, R480 (1995). https://doi.org/10.1103/PhysRevC.52.R480
S. Chattopadhyay, Phys. Rev. C 53, R1065 (1996). https://doi.org/10.1103/PhysRevC.53.R1065
E. Suraud, S. Ayik, J. Stryjewski, M. Belkacem, Nucl. Phys. A 519(1), 171 (1990). https://doi.org/10.1016/0375-9474(90)90624-U
S. Ayik, C. Grégoire, Nucl. Phys. A 513(1), 187 (1990). https://doi.org/10.1016/0375-9474(90)90348-P
J. Randrup, B. Remaud, Nucl. Phys. A 514(2), 339 (1990). https://doi.org/10.1016/0375-9474(90)90075-W
S. Ayik, E. Suraud, M. Belkacem, D. Boilley, Nucl. Phys. A 545(1), 35 (1992). https://doi.org/10.1016/0375-9474(92)90444-O
M. Colonna, G.F. Burgio, P. Chomaz, M. Di Toro, J. Randrup, Phys. Rev. C 47, 1395 (1993). https://doi.org/10.1103/PhysRevC.47.1395
M. Colonna, P. Chomaz, J. Randrup, Nucl. Phys. A 567(3), 637 (1994). https://doi.org/10.1016/0375-9474(94)90029-9
P. Reinhard, E. Suraud, S. Ayik, Ann. Phys. 213(1), 204 (1992). https://doi.org/10.1016/0003-4916(92)90289-X
P. Reinhard, E. Suraud, Ann. Phys. 216(1), 98 (1992). https://doi.org/10.1016/0003-4916(52)90043-2
R. Balian, M. Vénéroni, Ann. Phys. 164(2), 334 (1985). https://doi.org/10.1016/0003-4916(85)90020-X
H. Flocard, Ann. Phys. 191(2), 382 (1989). https://doi.org/10.1016/0003-4916(89)90323-0
T. Troudet, D. Vautherin, Phys. Rev. C 31, 278 (1985). https://doi.org/10.1103/PhysRevC.31.278
The INDRA Collaboration, F. Bocage, J. Colin, M. Louvel, G. Auger, C. Bacri, N. Bellaize, B. Borderie, R. Bougault, R. Brou, P. Buchet, J.L. Charvet, A. Chbihi, D. Cussol, R. Dayras, N.D. Cesare, A. Demeyer, D. Doré, D. Durand, J.D. Frankland, E. Galichet, E. Genouin-Duhamel, E. Gerlic, D. Guinet, P. Lautesse, J.L. Laville, J.F. Lecolley, R. Legrain, N.L. Neindre, O. Lopez, A.M. Maskay, L. Nalpas, A.D. Nguyen, M. Pârlog, J. Péter, E. Plagnol, M.F. Rivet, E. Rosato, F. Saint-Laurent, S. Salou, J. Steckmeyer, M. Stern, G. Tăbăcaru, B. Tamain, O. Tirel, L. Tassan-Got, E. Vient, M. Vigilante, C. Volant, J.P. Wieleczko, C.L. Brun, A. Genoux-Lubain, G. Rudolf, L. Stuttgé, Nucl. Phys. A 676(1), 391 (2000). https://doi.org/10.1016/S0375-9474(00)00193-7
The INDRA Collaboration, E. Plagnol, J. Łukasik, G. Auger, C.O. Bacri, N. Bellaize, F. Bocage, B. Borderie, R. Bougault, R. Brou, P. Buchet, J.L. Charvet, A. Chbihi, J. Colin, D. Cussol, R. Dayras, A. Demeyer, D. Doré, D. Durand, J.D. Frankland, E. Galichet, E. Genouin-Duhamel, E. Gerlic, D. Guinet, P. Lautesse, J.L. Laville, J.F. Lecolley, R. Legrain, N. Le Neindre, O. Lopez, M. Louvel, A.M. Maskay, L. Nalpas, A.D. Nguyen, M. Pârlog, J. Péter, M.F. Rivet, E. Rosato, F. Saint-Laurent, S. Salou, J.C. Steckmeyer, M. Stern, G. Tăbăcaru, B. Tamain, L. Tassan-Got, O. Tirel, E. Vient, C. Volant, J.P. Wieleczko, Phys. Rev. C 61, 014606 (1999). https://doi.org/10.1103/PhysRevC.61.014606
The INDRA Collaboration, J. Lecolley, E. Galichet, D.C.R. Guinet, R. Bougault, F. Gulminelli, G. Auger, C. Bacri, F. Bocage, B. Borderie, R. Brou, P. Buchet, J. Charvet, A. Chbihi, J. Colin, D. Cussol, R. Dayras, A. Demeyer, D. Doré, D. Durand, J.D. Frankland, E. Genouin-Duhamel, E. Gerlic, P. Lautesse, J. Laville, T. Lefort, R. Legrain, N. LeNeindre, O. Lopez, M. Louvel, A. Maskay, L. Nalpas, A.D. Nguyen, M. Parlog, J. Péter, E. Plagnol, M. Rivet, E. Rosato, F. Saint-Laurent, J. Steckmeyer, M. Stern, G. Tăbăcaru, B. Tamain, L. Tassan-Got, O. Tirel, E. Vient, C. Volant, J.P. Wieleczko, Nucl. Instr. Meth. Phys. Res. A 441(3), 517 (2000). https://doi.org/10.1016/S0168-9002(99)00831-1
V. Ambegaokar, in Superconductivity, vol. 1, ed. by R.D. Parks (Dekker, New York, 1969), chap. 5, p. 259
K. Morawetz, P. Lipavský, J. Koláček, E.H. Brandt, M. Schreiber, Int. J. Mod. Phys. B 21(13n14), 2348 (2007). https://doi.org/10.1142/S0217979207043713
G. Rickayzen, J. Phys. C 2(7), 1334 (1969). https://doi.org/10.1088/0022-3719/2/7/325
J. Bok, J. Klein, Phys. Rev. Lett. 20, 660 (1968). https://doi.org/10.1103/PhysRevLett.20.660
T.D. Morris, J.B. Brown, Physica 55, 760 (1971). https://doi.org/10.1016/0031-8914(71)90330-2
P. Lipavský, J. Koláček, J.J. Mareš, K. Morawetz, Phys. Rev. B 65, 012507 (2001). https://doi.org/10.1103/PhysRevB.65.012507
H.F. Budd, J. Vannimenus, Phys. Rev. Lett. 31, 1218 (1973). https://doi.org/10.1103/PhysRevLett.31.1218
K. Morawetz, N.H. March, R.H. Squire, Phys. Lett. A 372(10), 1707 (2008). https://doi.org/10.1016/j.physleta.2007.10.025
P. Lipavský, K. Morawetz, J. Koláček, J.J. Mareš, E.H. Brandt, M. Schreiber, Phys. Rev. B 69, 024524 (2004). https://doi.org/10.1103/PhysRevB.69.024524
P. Lipavský, K. Morawetz, J. Koláček, J.J. Mareš, E.H. Brandt, M. Schreiber, Phys. Rev. B 71, 024526 (2005). https://doi.org/10.1103/PhysRevB.71.024526
P. Lipavský, K. Morawetz, J. Koláček, J.J. Mareš, E.H. Brandt, M. Schreiber, Phys. Rev. B 70, 104518 (2004). https://doi.org/10.1103/PhysRevB.70.104518
K. Kumagai, K. Nozaki, Y. Matsuda, Phys. Rev. B 63, 144502 (2001). https://doi.org/10.1103/PhysRevB.63.144502
P. Lipavský, J. Koláček, K. Morawetz, E.H. Brandt, Phys. Rev. B 66, 134525 (2002). https://doi.org/10.1103/PhysRevB.66.134525
P. Lipavský, J. Koláček, K. Morawetz, E.H. Brandt, T.J. Yang (eds.), Bernoulli Potential in Superconductors, vol. 733, Lecture Notes in Physics (Springer, Berlin, 2008). ISBN 9783540734550. https://doi.org/10.1007/978-3-540-73456-7
C. Amovilli, N.H. March, Phys. Rev. A 69(5), 054302 (2004). https://doi.org/10.1103/PhysRevA.69.054302
N.H. March, G.G.N. Angilella, R. Pucci, Int. J. Mod. Phys. B 27, 1330021 (2013). https://doi.org/10.1142/S0217979213300211
Y.B. Ivanov, J. Knoll, D.N. Voskresensky, Phys. Atomic Nuclei 66(10), 1902 (2003). https://doi.org/10.1134/1.1619502
A. Peshier, Phys. Rev. D 70, 034016 (2004). https://doi.org/10.1103/PhysRevD.70.034016
W.M. Alberico, S. Chiacchiera, H. Hansen, A. Molinari, M. Nardi, Eur. Phys. J. A 38(1), 97 (2008). https://doi.org/10.1140/epja/i2008-10648-8
C. Moustakidis, V.P. Psonis, K. Chatzisavvas, C.P. Panos, S.E. Massen, Phys. Rev. E 81, 011104 (2010). https://doi.org/10.1103/PhysRevE.81.011104
E. Suraud, P.G. Reinhard, New J. Phys. 16(6), 063066 (2014). https://doi.org/10.1088/1367-2630/16/6/063066
S.K. Baur, E.J. Mueller, Phys. Rev. A 82, 023626 (2010). https://doi.org/10.1103/PhysRevA.82.023626
J.G. Kirkwood, E. Monroe, Boggs. J. Chem. Phys. 10(6), 394 (1942). https://doi.org/10.1063/1.1723737
B.B. Laird, A.D.J. Haymet, Phys. Rev. A 45, 5680 (1992). https://doi.org/10.1103/PhysRevA.45.5680
D. Nayar, C. Chakravarty, Phys. Chem. Chem. Phys. 15, 14162 (2013). https://doi.org/10.1039/C3CP51114F
M. Puoskari, Physica A 272(3), 509 (1999). https://doi.org/10.1016/S0378-4371(99)00262-9
J.A. Hernando, L. Blum, Phys. Rev. E 62, 6577 (2000). https://doi.org/10.1103/PhysRevE.62.6577
D. de Boer, G.E. Uhlenbeck (eds.), Studies in Statistical Mechanics, vol. 1 (North-Holland, Amsterdam, 1962)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Morawetz, K. (2018). Nonlocal Quantum Kinetic Theory and the Formation of Correlations. In: Angilella, G., Amovilli, C. (eds) Many-body Approaches at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-72374-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-72374-7_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72373-0
Online ISBN: 978-3-319-72374-7
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)