Skip to main content

Evaluation of the Occurrence of Fouling and Scaling on the Membrane HDX 200 for the Treatment of the Effluent of Brass Electrodeposition with EDTA as Complexing Agent

  • Conference paper
  • First Online:
Energy Technology 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Considering the risks involving the use of cyanide, other complexing agents have been evaluated for the treatment by electrodialysis of the effluent of brass electrodeposition and among them, EDTA is interesting since it has been already tested for many years to separate ions. The main objective of the present paper was to evaluate the occurrence of fouling and scaling on the surface of the anion-exchange membrane HDX 200 by the construction of chronopotentiometric curves and speciation diagrams in different conditions (pH between 10–12 and proportion of cupric ions of 30%, 50%, 70%). According to the results, the chronopotentiometric curves did not show additional inflexion points typical for the cases which occurs fouling and scaling for the pH values evaluated, which is in accordance with the speciation diagrams of the solutions constructed with the aid of Hydra-Medusa software. Hence, the pH and the proportion of cupric ions did not show influence on the curves behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rashwan SM (2017) Electrodeposition of Zn–Cu coatings from alkaline sulphate bath containing glycine. Trans IMF 85. https://doi.org/10.1179/174591907X216440

  2. Brenner A (1963) Electrodeposition of alloys. Academic Press, New York

    Google Scholar 

  3. Ramírez C, Calderón JA (2016) Study of the effect of Triethanolamine as a chelating agent in the simultaneous electrodeposition of copper and zinc from non-cyanide electrolytes. J Electroanal Chem 765:132–139. https://doi.org/10.1016/j.jelechem.2015.06.003

    Article  CAS  Google Scholar 

  4. Ballesteros JC, Torres-Martínez LM, Juárez-Ramírez I, Trejo G, Meas Y (2014) Study of the electrochemical co-reduction of Cu2+ and Zn2+ ions from an alkaline non-cyanide solution containing glycine. J Electroanal Chem 727:104–112. https://doi.org/10.1016/j.jelechem.2014.04.020

    Article  CAS  Google Scholar 

  5. Almeida MRH, Barbano EP, Carvalho MF, Tulio PC, Carlos IA (2015) Copper-zinc electrodeposition in alkaline-sorbitol medium: electrochemical studies and structural, morphological and chemical composition characterization. Appl Surf Sci 333:13–22. https://doi.org/10.1016/j.apsusc.2015.02.005

    Article  CAS  Google Scholar 

  6. Almeida MRH, Barbano EP, Zacarin MG, Brito MM, Tulio PC, Carlos IA (2016) Electrodeposition of CuZn films from free-of-cyanide alkaline baths containing EDTA as complexing agent. Surf Coat Technol 287:103–112. https://doi.org/10.1016/j.surfcoat.2015.12.079

    Article  CAS  Google Scholar 

  7. Almeida MRH, Barbano EP, Carvalho MF, Carlos IA, Siqueira JLP, Barbosa LL (2011) Electrodeposition of copper-zinc from an alkaline bath based on EDTA. Surf Coat Technol 206:95–102. https://doi.org/10.1016/j.surfcoat.2011.06.050

    Article  CAS  Google Scholar 

  8. Assaf F, Rehim SSAE, Mohamed AS, Zaky AM (1995) Electroplating of brass from citrate-based alloy baths. Indian J Chem 2:147–152

    CAS  Google Scholar 

  9. Senna LF, Díaz SI, Sathler L (2003) Electrodeposition of copper-zinc alloys in pyrophosphate-based electrolytes. J Appl Electrochem 33:1155–1161. https://doi.org/10.1023/B:JACH.0000003756.11862.6e

    Article  CAS  Google Scholar 

  10. Despić AR, Marinović V, Jović VD (1992) Kinetics of deposition and dissolution of brass from the pyrophosphate-oxalate bath. J Electroanal Chem 339:473–488. https://doi.org/10.1016/0022-0728(92)80468-J

    Article  Google Scholar 

  11. Fujiwara Y, Enomoto H (1988) Characterization of Cu-Zn alloy deposits from glucoheptonate baths. Surf Coat Technol 35:113–124. https://doi.org/10.1016/0257-8972(88)90062-X

    Article  CAS  Google Scholar 

  12. Krishnan R, Muralidharan V, Natarajan S (1996) A non-cyanide brass plating bath. Bull Electrochem 12:274–277

    CAS  Google Scholar 

  13. Rossi A (1992) A tartrate-based alloy bath for brass-plated steel wire production. J Appl Electrochem 22:64–72. https://doi.org/10.1007/BF01093013

    Article  Google Scholar 

  14. Juškenas R, Karpavičiene V, Pakštas V, Selskis A, Kapočius V (2007) Electrochemical and XRD studies of Cu-Zn coatings electrodeposited in solution with d-mannitol. J Electroanal Chem 602:237–244. https://doi.org/10.1016/j.jelechem.2007.01.004

    Article  CAS  Google Scholar 

  15. Ku Y, Jung IL (2001) Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res 35:135–142. https://doi.org/10.1016/S0043-1354(00)00098-1

    Article  CAS  Google Scholar 

  16. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  17. Booster JL, Van Sandwijk A, Reuter MA (2004) Opposing scaling and fouling during electrodialysis of sodium fluoride solution in a membrane cell reactor. Hydrometallurgy 73:177–187. https://doi.org/10.1016/j.hydromet.2003.10.012

    Article  CAS  Google Scholar 

  18. Ayala-Bribiesca E, Pourcelly G, Bazinet L (2007) Nature identification and morphology characterization of anion-exchange membrane fouling during conventional electrodialysis. J Colloid Interface Sci 308:182–190. https://doi.org/10.1016/j.jcis.2006.11.012

    Article  CAS  Google Scholar 

  19. Marder L, Ortega Navarro EM, Perez-Herranz V, Bernardes AM, Ferreira JZ (2006) Evaluation of transition metals transport properties through a cation exchange membrane by chronopotentiometry. J. Memb Sci 284:267–275. https://doi.org/10.1016/j.memsci.2006.07.039

    Article  CAS  Google Scholar 

  20. Pismenskaia N, Sistat P, Huguet P, Nikonenko V, Pourcelly G (2004) Chronopotentiometry applied to the study of ion transfer through anion exchange membranes. J Memb Sci 228:65–76. https://doi.org/10.1016/j.memsci.2003.09.012

    Article  CAS  Google Scholar 

  21. Puigdomench I (2001) Hydra Medusa—make equilibrium diagrams using sophisticated algorithms

    Google Scholar 

  22. Choi JH, Moon SH (2003) Structural change of ion-exchange membrane surfaces under high electric fields and its effects on membrane properties. J Colloid Interface Sci 265:93–100. https://doi.org/10.1016/S0021-9797(03)00136-X

    Article  CAS  Google Scholar 

  23. Barros KS, Tenório JAS, Espinosa DCR (2017) Chronopotentiometry applied to the determination of copper transport properties through a cation-exchange membrane. In: Energy technology 2017, carbon dioxide management and other technologies. Springer International Publishing, pp 473– 481. https://doi.org/10.1007/978-3-319-52192-3_46

    Google Scholar 

  24. Scarazato T, Buzzi DC, Bernardes AM, Tenório JAS, Espinosa DCR (2015) Current-Voltage curves for treating effluent containing HEDP: determination of the limiting current. Braz J Chem Eng 32:831–836

    Article  Google Scholar 

  25. Marder L, Ortega Navarro EM, Pérez-Herranz V, Bernardes AM, Ferreira JZ (2009) Chronopotentiometric study on the effect of boric acid in the nickel transport properties through a cation-exchange membrane. Desalination 249:348–352. https://doi.org/10.1016/j.desal.2009.06.040

    Article  CAS  Google Scholar 

  26. Marder L, Bittencourt SD, Zoppas Ferreira J, Bernardes AM (2016) Treatment of molybdate solutions by electrodialysis: the effect of pH and current density on ions transport behavior. Sep Purif Technol 167:32–36. https://doi.org/10.1016/j.seppur.2016.04.047

    Article  CAS  Google Scholar 

  27. Wilhelm FG, Van der Vegt NFA, Wessling M, Strathmann H (2001) Chronopotentiometry for the advanced current-voltage characterisation of bipolar membranes. J Electroanal Chem 502:152–166. https://doi.org/10.1016/S0022-0728(01)00348-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support given by funding agencies CNPq (Process 141346/2016-7) and FAPESP (Process 2012/51871-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Barros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barros, K.S., Tenório, J.A.S., Espinosa, D.C.R. (2018). Evaluation of the Occurrence of Fouling and Scaling on the Membrane HDX 200 for the Treatment of the Effluent of Brass Electrodeposition with EDTA as Complexing Agent. In: Sun, Z., et al. Energy Technology 2018 . TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72362-4_35

Download citation

Publish with us

Policies and ethics