Skip to main content

Gas Hydrate-Based CO2 Separation Process: Quantitative Assessment of the Effectiveness of Various Chemical Additives Involved in the Process

  • Conference paper
  • First Online:
Book cover Energy Technology 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Gas hydrates technology has been considered as an alternative method for carbon dioxide (CO2) separation. A wide range of studies have been reported in the past decade on the improvement of the separation efficiency by using chemical additives. While most of these studies have shown improved kinetics, thermodynamics and/or separation efficiency at the laboratory scale, there has been no quantitative analysis of the energy consumption for viable industrial applications. Comparison of the effectiveness of the chemical additives from separate studies or groups also is impossible. The present work is focused on the modelling of the hydrate-based CO2 separation process and provides a quantitative approach that is new in its analysis of the effectiveness of chemical additives in relation to the energy required and the kinetic parameters involved in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spencer DF (1999) Integration of an advanced CO2 separation process with methods for disposing of CO2 in oceans and terrestrial deep aquifers. In: Eliasson B, Riemer P, Wokaun A (eds) Greenhouse gas control technologies. Elsevier p. 89–94

    Google Scholar 

  2. Tam S et al (2001) A high pressure carbon dioxide separation process for IGCC plants. Paper presented at First National Conference on Carbon Sequestration, Washington DC, USA, 14–17 May 2001

    Google Scholar 

  3. Ho MT, Allinson GW, Wiley DE (2008) Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Ind Eng Chem Res 47:4883–4890

    Article  CAS  Google Scholar 

  4. Sloan ED, Koh CA (2008) Clathraye hydrates of natural gases. Taylor & Francis, New York

    Google Scholar 

  5. Herslund PJ, Daraboina N, Thomsen K, Abildskov J, Solms NV (2014) Measuring and modelling of the combined thermodynamic promoting effect of tetrahydrofuran and cyclopentane on carbon dioxide hydrates. Fluid Phase Equilib 381:20–27

    Article  CAS  Google Scholar 

  6. Babu P, Linga P, Kumar R, Englezos P (2015) A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85:261–279

    Article  CAS  Google Scholar 

  7. Dashti H, Yew LZ, Lou X (2015) Recent advances in gas hydrate-based CO2 capture. J Nat Gas Sci Eng 23:195–207

    Article  CAS  Google Scholar 

  8. Xu CG, Li XS (2014) Research progress of hydrate-based CO2 separation and capture from gas mixtures. RSC Adv 4:18301–18316

    Article  CAS  Google Scholar 

  9. Herslund PJ, Thomsen K, Abildskov J, Solms NV (2013) Application of the cubic-plus-association (CPA) equation of state to model the fluid phase behaviour of binary mixtures of water and tetrahydrofuran. Fluid Phase Equilib 356:209–222

    Article  CAS  Google Scholar 

  10. Herslund PJ, Thomsen K, Abildskov J, Solms NV (2014) Modelling of cyclopentane promoted gas hydrate systems for carbon dioxide capture processes. Fluid Phase Equilib 375:89–103

    Article  CAS  Google Scholar 

  11. Verrett J, Renault-Crispo JS, Servio P (2015) Phase equilibria, solubility and modeling study of CO2/CH4 + tetra-n-butylammonium bromide aqueous semi-clathrate systems. Fluid Phase Equilib 388:160–168

    Article  CAS  Google Scholar 

  12. Shi LL, Liang DQ (2015) Thermodynamic model of phase equilibria of tetrabutyl ammonium halide (fluoride, chloride, or bromide) plus methane or carbon dioxide semiclathrate hydrates. Fluid Phase Equilib 386:149–154

    Article  CAS  Google Scholar 

  13. Englezos P, Kalogerakis N, Dholabhai PD, Bishnoi PR (1987) Kinetics of formation of methane and ethane gas hydrates. Chem Eng Sci 42:2647–2658

    Article  CAS  Google Scholar 

  14. ZareNezhad B, Mottahedin M, Varaminian F (2015) A new approach for determination of single component gas hydrate formation kinetics in the absence or presence of kinetic promoters. Chem Eng Sci 137:447–457

    Article  CAS  Google Scholar 

  15. Sun Q, Kang YT (2015) Experimental correlation for the formation rate of CO2 hydrate with THF (tetrahydrofuran) for cooling application. Energy 91:712–719

    Article  CAS  Google Scholar 

  16. Tajima H, Yamasaki A, Kiyono F (2004) Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation. Energy 29:1713–1729

    Article  CAS  Google Scholar 

  17. Duc NH, Chauvy F, Herri JM (2007) CO2 capture by hydrate crystallization —A potential solution for gas emission of steelmaking industry. Energy Convers Manag 48:1313–1322

    Article  CAS  Google Scholar 

  18. Kang SP, Lee H (2000) Recovery of CO2 from flue gas using gas hydrate: thermodynamic verification through phase equilibrium measurements. Environ Sci Technol 34:4397–4400

    Article  CAS  Google Scholar 

  19. Linga P, Adeyemo A, Englezos P (2008) Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide. Environ Sci Technol 42:315–320

    Article  CAS  Google Scholar 

  20. Belandria V, Mohammadi AH, Eslamimanesh A, Richon D, Sánchez-Mora MF, Galicia-Luna LA (2012) Phase equilibrium measurements for semi-clathrate hydrates of the (CO2 + N2 + tetra-n-butylammonium bromide) aqueous solution systems: Part 2. Fluid Phase Equilib 322–323:105–112

    Article  Google Scholar 

  21. Fan S, Li S, Wang J, Lang X, Wang Y (2009) Efficient Capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates. Energy Fuels 23:4202–4208

    Article  CAS  Google Scholar 

  22. Li XS, Xu CG, Chen ZY, Wu HJ (2010) Tetra-n-butyl ammonium bromide semi-clathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride. Energy 35:3902–3908. http://www.sciencedirect.com/science/article/pii/S0360544210003233

    Article  CAS  Google Scholar 

  23. Himmelblau DM, Riggs JB (2004) Basic principles and calculations in chemical engineering. Prentice-Hall International, N.J.

    Google Scholar 

  24. Ratcliffe CI, Ripmeester JA (1986) Proton and carbon-13 NMR studies on carbon dioxide hydrate. J Phys Chem 90:1259–1263

    Article  CAS  Google Scholar 

  25. Kamath VA (1984) Study of heat transfer characteristics during dissociation of gas hydrates in porous media. PhD thesis, University of Pittsburgh

    Google Scholar 

  26. Gupta A, Lachance J, Sloan ED, Koh CA (2008) Measurements of methane hydrate heat of dissociation using high pressure differential scanning calorimetry. Chem Eng Sci 63:5848–5853

    Article  CAS  Google Scholar 

  27. Handa YP (1986) Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton. J Chem Thermodyn 18:891–902

    Article  CAS  Google Scholar 

  28. Kang SP, Lee H, Ryu BJ (2001) Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen, (carbon dioxide + nitrogen), and (carbon dioxide + nitrogen + tetrahydrofuran). J Chem Thermodyn 33:513–521

    Article  CAS  Google Scholar 

  29. Delahaye A, Fournaison L, Marinhas S, Chatti I, Petitet JP, Dalmazzone D, Fürst W (2006) Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration. Ind Eng Chem Res 45:391–397

    Article  CAS  Google Scholar 

  30. Sabil KM, Witkamp GJ, Peters CJ (2010) Estimations of enthalpies of dissociation of simple and mixed carbon dioxide hydrates from phase equilibrium data. Fluid Phase Equilib 290:109–114

    Article  CAS  Google Scholar 

  31. Peng DY, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64

    Article  CAS  Google Scholar 

  32. Ribeiro CP, Lage PLC (2008) Modelling of hydrate formation kinetics: state-of-the-art and future directions. Chem Eng Sci 63:2007–2034

    Article  CAS  Google Scholar 

  33. Shi BH, Fan SS, Lou X (2014) Application of the shrinking-core model to the kinetics of repeated formation of methane hydrates in a system of mixed dry-water and porous hydrogel particulates. Chem Eng Sci 109:315–325

    Article  CAS  Google Scholar 

  34. Chen GJ, Guo TM (1996) Thermodynamic modeling of hydrate formation based on new concepts. Fluid Phase Equilib 122:43–65

    Article  CAS  Google Scholar 

  35. Kim HC, Bishnoi PR, Heidemann RA, Rizvi SSH (1987) Kinetics of methane hydrate decomposition. Chem Eng Sci 42:1645–1653

    Article  CAS  Google Scholar 

  36. Clarke MA, Bishnoi PR (2004) Determination of the intrinsic rate constant and activation energy of CO2 gas hydrate decomposition using in-situ particle size analysis. Chem Eng Sci 59:2983–2993

    Article  CAS  Google Scholar 

  37. Udachin KA, Ratcliffe CI, Ripmeester JA (2001) Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements. J Phys Chem B 105:4200–4204

    Article  CAS  Google Scholar 

  38. Yoon JH, Yamamoto Y, Komai T, Haneda H, Kawamura T (2003) Rigorous approach to the prediction of the heat of dissociation of gas hydrates. Ind Eng Chem Res 42:1111–1114

    Article  CAS  Google Scholar 

  39. Park S, Lee S, Lee Y, Lee Y, Seo Y (2013) Hydrate-based pre-combustion capture of carbon dioxide in the presence of a thermodynamic promoter and porous silica gels. Int J Greenh Gas Control 14:193–199

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the Australia-China Natural Gas Technology Partnership Fund for financial assistance to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Lou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dashti, H., Lou, X. (2018). Gas Hydrate-Based CO2 Separation Process: Quantitative Assessment of the Effectiveness of Various Chemical Additives Involved in the Process. In: Sun, Z., et al. Energy Technology 2018 . TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72362-4_1

Download citation

Publish with us

Policies and ethics