Skip to main content

On the Security of In-Vehicle Hybrid Network: Status and Challenges

  • Conference paper
  • First Online:
Information Security Practice and Experience (ISPEC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10701))

Abstract

In-Vehicle Network (IVN) is composed of many communication nodes and Electronic Control Units (ECUs). The complex and interactive hybrid IVN expose more vulnerabilities of the system as it connects to the external network environment and opens up more attacking surface. In this paper, we first show a complete structure of the in-vehicle hybrid network. Then, we propose a three-layer network structure model, analyze the security threats of each layer, and compare the state-of-the-art countermeasures in detail. Finally, we identify the challenges and future research directions for the security of the in-vehicle hybrid network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security analysis of a modern automobile. In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 447–462. IEEE (2010)

    Google Scholar 

  2. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental analyses of automotive attack surfaces. In: USENIX Security Symposium (2011)

    Google Scholar 

  3. Mukherjee, S., Shirazi, H., Ray, I., Daily, J., Gamble, R.: Practical DoS attacks on embedded networks in commercial vehicles. In: Ray, I., Gaur, M.S., Conti, M., Sanghi, D., Kamakoti, V. (eds.) ICISS 2016. LNCS, vol. 10063, pp. 23–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49806-5_2

    Chapter  Google Scholar 

  4. Apvrille, L., El Khayari, R., Henniger, O., Roudier, Y., Schweppe, H., Seudié, H.,Weyl, B., Wolf, M.: Secure automotive on-board electronics network architecture. In: FISITA 2010 World Automotive Congress, Budapest, Hungary, vol. 8 (2010)

    Google Scholar 

  5. Specification of Module Secure Onboard Communication AUTOSAR Release 4.2.2. https://www.autosar.org/standards/classic-platform/release-42/software-architecture/general/. Accessed 3 Aug 2017

  6. Symantec anomaly detection for automotive. https://www.symantec.com/products/anomaly-detection-for-automotive. Accessed 29 July 2017

  7. Lee, S.Y., Park, S.H., Choi, H.S., Lee, C.D.: MOST network system supporting full-duplexing communication. In: 2012 14th International Conference on Advanced Communication Technology (ICACT), pp. 1272–1275. IEEE (2012)

    Google Scholar 

  8. MOST150 intelligent network interface controller. http://www.microchip.com/wwwproducts/en/OS81118. Accessed 23 July 2017

  9. Steinbach, T., Lim, H.T., Korf, F., Schmidt, T.C., Herrscher, D., Wolisz, A.: Tomorrow’s in-car interconnect? A competitive evaluation of IEEE 802.1 AVB and time-triggered ethernet (AS6802). In: 2012 IEEE Vehicular Technology Conference (VTC Fall), pp. 1–5. IEEE (2012)

    Google Scholar 

  10. Brunner, S., Roder, J., Kucera, M., Waas, T.: Automotive E/E-architecture enhancements by usage of ethernet TSN. In: 2017 13th Workshop on Intelligent Solutions in Embedded Systems (WISES), pp. 9–13. IEEE (2017)

    Google Scholar 

  11. Cho, K.T., Shin, K.G.: Error handling of in-vehicle networks makes them vulnerable. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1044–1055. ACM (2016)

    Google Scholar 

  12. Ishtiaq Roufa, R.M., Mustafaa, H., Travis Taylora, S.O., Xua, W., Gruteserb, M., Trappeb, W., Seskarb, I.: Security and privacy vulnerabilities of in-car wireless networks: a tire pressure monitoring system case study. In: 19th USENIX Security Symposium, Washington DC, pp. 11–13 (2010)

    Google Scholar 

  13. Al-Kahtani, M.S.: Survey on security attacks in vehicular ad hoc networks (VANETs). In: 2012 6th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–9. IEEE (2012)

    Google Scholar 

  14. Wolf, M., Gendrullis, T.: Design, implementation, and evaluation of a vehicular hardware security module. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 302–318. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31912-9_20

    Chapter  Google Scholar 

  15. Komala, G.K.: Secure broadcast in controller area networks using efficient protocols. Imp. J. Interdisc. Res. 3(1), 868 (2016)

    Google Scholar 

  16. Song, H.M., Kim, H.R., Kim, H.K.: Intrusion detection system based on the analysis of time intervals of CAN messages for in-vehicle network. In: 2016 International Conference on Information Networking (ICOIN), pp. 63–68. IEEE (2016)

    Google Scholar 

  17. Müter, M., Asaj, N.: Entropy-based anomaly detection for in-vehicle networks. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 1110–1115. IEEE (2011)

    Google Scholar 

  18. Seifert, S., Obermaisser, R.: Secure automotive gateway—secure communication for future cars. In: 2014 12th IEEE International Conference on Industrial Informatics (INDIN), pp. 213–220. IEEE (2014)

    Google Scholar 

  19. Integrated automotive gateway can enable connected cars. http://articles.sae.org/13711/. Accessed 23 July 2017

  20. Alheeti, K.M.A., Gruebler, A., McDonald-Maier, K.D.: An intrusion detection system against malicious attacks on the communication network of driverless cars. In: 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), pp. 916–921. IEEE (2015)

    Google Scholar 

  21. Fujitsu Semiconductor Europe: Fujitsu announces powerful MCU with secure hardware extension (SHE) for automotive instrument clusters (2012)

    Google Scholar 

  22. Marchetti, M., Stabili, D., Guido, A., Colajanni, M.: Evaluation of anomaly detection for in-vehicle networks through information-theoretic algorithms. In: 2016 IEEE 2nd International Forum Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), pp. 1–6. IEEE (2016)

    Google Scholar 

  23. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle. Black Hat USA (2015)

    Google Scholar 

  24. Foster, I.D., Prudhomme, A., Koscher, K., Savage, S.: Fast and vulnerable: a story of telematic failures. In: WOOT (2015)

    Google Scholar 

  25. SAE Std J3061_201601, Cybersecurity Guidebook for Cyber-Physical Vehicle Systems. http://standards.sae.org/j3061_201601/

  26. Han, G., Zeng, H., Li, Y., Dou, W.: SAFE: security-aware flexray scheduling engine. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 1–4. IEEE (2014)

    Google Scholar 

  27. Kang, M.J., Kang, J.W.: A novel intrusion detection method using deep neural network for in-vehicle network security. In: 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2016)

    Google Scholar 

  28. Poudel, B., Giri, N.K., Munir, A.: Design and comparative evaluation of GPGPU-and FPGA-based MPSoC ECU architectures for secure, dependable, and real-time automotive CPS. In: 2017 IEEE 28th International Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp. 29–36. IEEE (2017)

    Google Scholar 

  29. Cho, K.-T., Shin, K.G.: Fingerprinting electronic control units for vehicle intrusion detection. In: USENIX Security Symposium, pp. 911–927 (2016)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by SUTD start-up research grant SRG-ISTD-2017-124. The first author’s work was done during his internship in SUTD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianxiang Huang or Jianying Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, T., Zhou, J., Wang, Y., Cheng, A. (2017). On the Security of In-Vehicle Hybrid Network: Status and Challenges. In: Liu, J., Samarati, P. (eds) Information Security Practice and Experience. ISPEC 2017. Lecture Notes in Computer Science(), vol 10701. Springer, Cham. https://doi.org/10.1007/978-3-319-72359-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72359-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72358-7

  • Online ISBN: 978-3-319-72359-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics