Skip to main content

Review on the Processes for the Recovery of Rare Earth Metals (REMs) from Secondary Resources

  • Conference paper
  • First Online:

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Treatment of secondary/waste to recover rare earth metals (REMs) is gaining importance due to its increasing global demand, lack of availability of high grade natural resources and huge generation of secondaries. Present paper reports the critical review on available processes for recovery of REMs from secondaries viz. manufacturing scraps, e-waste , industrial residues such as red mud , fly ash, waste water , etc. Hydrometallurgical processes with combination of Beneficiation/Pyro-/Electro techniques are discussed to recover REMs effectively. The recommended processes require less energy to deliver high purity yield which is one step towards green environment. Salient findings on various methods are reported with recommendations which will be helpful to researchers working in the area of REMs extraction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kumari A, Panda R, Jha MK, Kumar JR, Lee JY (2015) Process development to recover rare earth metals from monazite mineral: a review. Miner Eng 79:102–115

    Article  Google Scholar 

  2. Jha MK, Kumari A, Panda R, Kumar JR, Yoo KK, Lee JY (2016) Review on hydrometallurgical review of rare earth metals. Hydrometallurgy 165:2–26

    Article  Google Scholar 

  3. Kumar JR, Lee JY (2017) Recovery of critical rare earth elements for green energy technologies. The Minerals, Metals & Materials Society, Rare Metal Technol 19–29

    Google Scholar 

  4. Papangelakis VG, Moldoveanu G (2014) Recovery of rare earth elements from clay minerals. In: 1st European rare earth resources conference, Milos, pp 191–202, 04–07/09/2014

    Google Scholar 

  5. U.S. Geological Survey (2017) Mineral commodity summaries 2017: U.S. Geological Survey, 202 p. doi:http://doi.org/10.3133/70180197

  6. Panayotova M, Panayotov V (2012) Review of methods for the rare earth metals recycling. In: Annual of the University of Mining and Geology “St. Ivan Rilski”, vol 55, pp 142–147

    Google Scholar 

  7. Kumar V, Jha MK, Kumari A, Panda R, Kumar JR, Lee JY (2014) Recovery of rare earth metals (REMs) from primary and secondary resources: a review. Rare Metal Technology, TMS (The Minerals, Metals & Materials Society), pp 81–88

    Google Scholar 

  8. Zhuang WQ, Fitts JP, Ajo-Franklin CM, Maes S, Alvarez-Cohen L, Hennebel T (2015) Recovery of critical metals using biometallurgy. Curr Opin Biotechnol 33:327–335

    Article  Google Scholar 

  9. Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22

    Article  Google Scholar 

  10. Akai T (2008) Recycling rare earth elements. AIST Today 29:8–9

    Google Scholar 

  11. Kara H, Chapman A, Crichton T, Willis P, Morley N (2010) Lanthanide resources and alternatives, Department for Transport and Department for Business, Oakdene Hollins Research & Consulting

    Google Scholar 

  12. Peterson ES, Jones E (2014) Improving rare earth reuse and recycling. In: Proceedings of 248th American Chemical Society Meeting, San Francisco

    Google Scholar 

  13. Schüler D, Buchert M, Liu R, Dittrich S, Merz C (2011) Study on rare earths and their recycling. The Greens/EFA Group in the European Parliament, Darmstadt, Öko-Institut

    Google Scholar 

  14. Yang Y, Walton A, Sheridan R, Guth K, Guth R, Gutfleisch O, Buchert M, Steenari B, Gerven TV, Jones PT, Binnemans K (2017) REE recovery from end-of-life Nd-Fe-B permanent magnet scrap: a critical review. J Sustain Metall 3:122–149

    Article  Google Scholar 

  15. Goodier E (2005) The recycling and future selection of permanent magnets and power cores. Presentation at Sweift Levick Magnets

    Google Scholar 

  16. Clenfield J, Shiraki M, (2010) Hitachi develops machine to recycle rare earths to cut reliance on China

    Google Scholar 

  17. Bandara HMD, Darcy JW, Apelian D, Emmert MH (2014) Value analysis of neodymium content in shredder feed: towards enabling the feasibility of rare earth magnet recycling. Environ Sci Technol 48:6553–6560

    Article  Google Scholar 

  18. Yamamura T, Mehmood M, Maekawa H, Sato Y (2004) Electrochemical processing of rare earth and rare metals by using molten salts. Chem Sustain Develop 12:105–111

    Google Scholar 

  19. Shirayama S, Okabe T (2009) Selective extraction of Nd and Dy from rare earth magnet scrap into molten salt. In: Processing materials for properties, The Minerals, Metals & Materials Society

    Google Scholar 

  20. Ellis TW, Schmidt FA, Jones LL (1994) Methods and opportunities in recycling of rare earth based materials. Metals and materials waste reduction, recovery and remediation (TMS), Warrendale, pp 199–208

    Google Scholar 

  21. Itakura T, Sasai R, Itoh H (2006) Resource recovery from Nd-Fe-B sintered magnet by hydrothermal treatment. J Alloys Compd 408:1382–1385

    Article  Google Scholar 

  22. Xu Y, Chumbley LS, Laabs FC (2000) Liquid metal extraction of Nd from Nd-Fe-B magnet scraps. J Mater Res 15:2296–2304

    Article  Google Scholar 

  23. Lyman JW, Palmer GR (1992) Scrap treatment method for rare earth transition metal alloys. US Patent 5 129:945

    Google Scholar 

  24. Zhang X, Yu D, Guo L (2010) Test study new process on recovering rare earth by electrical reduction-P507 extraction separation method. J Copper Eng 1:1009–3842

    Google Scholar 

  25. Okabe TH, Takeda O, Fukuda K, Umetsu Y (2003) Direct extraction and recovery of neodymium from magnet scrap. Mater Transac 44:798–801

    Article  Google Scholar 

  26. Takeda O, Okabe TH, Umetsu Y (2004) Phase equilibrium of the system Ag-Fe-Nd and Nd extraction from magnet scraps using molten silver. J Alloys Compd 379:305–313

    Article  Google Scholar 

  27. Itoh M, Masuda M, Suzuki S, Machida K (2004) Recycling of rare earth sintered magnets as isotropic bonded magnets by melt-spinning. J Alloys Compd 374:393–396

    Article  Google Scholar 

  28. Kawasaki T, Itoh M, Machida K (2003) Reproduction of Nd-Fe-B sintered magnet scraps using a binary alloy blending technique, Japan. Mater Trans 44(9):1682–1685

    Article  Google Scholar 

  29. Zakotnik M, Harris IR, Wiliams AJ (2009) Multiple recycling of Nd-Fe-B type sintered magnets. J Alloys Compd 469:314–321

    Article  Google Scholar 

  30. Walton A, Han Y, Speight JD, Harris IR, Williams AJ (2012) The use of hydrogen to extract and re-process Nd-Fe-B magnets from electronic waste. In: Proceeding of the 22nd international workshop on rare earth permanent magnets and their applications, Nagasaki, pp 11–13

    Google Scholar 

  31. Sinha MK, Pramanik S, Kumari A, Sahu SK, Prasad LB, Jha MK, Yoo KK, Pandey BD (2017) Recovery of value added products of Sm and Co from waste SmCo magnet by hydrometallurgical route. Sep Pur Tech 179:1–12

    Article  Google Scholar 

  32. Stanton C (2016) Sulfation roasting and leaching of samarium-cobalt magnet swarf for samarium recovery. Masters Thesis, Colorado School of Mines

    Google Scholar 

  33. Binnemans K, Jones PT (2014) Perspectives for the recovery of rare earths from end-of-life fluorescent lamps. J Rare Earths 32(3):195–200

    Article  Google Scholar 

  34. Buchert M, Manhart A, Bleher D, Pingel D (2012) Recycling critical raw materials from waste electronic equipment. Oeko-Institut e.V, Darmstadt, Germany

    Google Scholar 

  35. Ling H, Wen J, Yanwei Y, Weimin S (2017) Study on alkali mechanical activation for recovering rare earth from waste fluorescent lamps. J Rare Earths, In Press

    Google Scholar 

  36. Ippolite NM, Innocenzi V, De Michelis I, Medici F, Veglio F (2017) Rare earth elements recovery from fluorescent lamps: a new thermal pretreatment to improve the efficiency of the hydrometallurgical process. J Clean Prod 153:287–298

    Article  Google Scholar 

  37. Tunsu C, Petranikova M, Ekberg C, Retegan T (2016) A hydrometallurgical process for the recovery of rare earth elements from fluorescent lamp waste fractions. Sep Purif Technol 161(17):172–186

    Article  Google Scholar 

  38. Innocenzi V, Ippolito NM, De Michelis I, Medici F, Veglio F (2016) A hydrometallurgical process for the recovery of terbium from fluorescent lamps: experimental design, optimization of acid leaching process and process analysis. J Environ Manage 184(3):552–559

    Article  Google Scholar 

  39. Dupont D, Binnemans K (2015) Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3:Eu3+ from lamp phosphor waste. Green Chem 17:856–868

    Article  Google Scholar 

  40. Tan Q, Deng C, Li J (2016) Innovative applications of mechanical activation for rare earth elements recovering: process optimization and mechanism exploration. Sci Rep 6:19961

    Article  Google Scholar 

  41. Yu ZS, Chen MB (1995) Rare earth elements and their applications. Metallurgical Industry Press, Beijing (P.R. China)

    Google Scholar 

  42. Hykawy J (2010) Report on the 6th International rare earths conference, Hong Kong

    Google Scholar 

  43. Hagelüken C, Buchert M, Stahl H (2005) Materials flow of platinum group metals-systems analysis and measures for sustainable optimization of the materials flow of platinum group metals. Umicore Precious Metals Refining and Öko-Institut e. V. ISBN 0-9543293-7-6, GFMS Ltd, London, 2005

    Google Scholar 

  44. Felix N, Vanriet C (1994) Recycling of electronic scrap at UMS Hoboken Smelter. In: Proceedings of the 18th International precious metals conference, Vancouver, Canada, pp 159–169

    Google Scholar 

  45. He H, Meng J (2011) Recycling rare earth from spent FCC catalyst using P507 (HEH/EHP) as extractant. Zhongnan Daxue Xuebao, Ziran Kexueban 42:2651–2657

    Google Scholar 

  46. Vierheilig AA (2012) Methods of recovering rare earth elements. US Patent No. 8,263,028

    Google Scholar 

  47. Muller T, Friedrich B (2006) Development of a recycling process for nickel-metal hydride batteries. J Power Sources 158:1498–1509

    Article  Google Scholar 

  48. Lyman JW, Palmer GR (1995) Hydrometallurgical treatment of nickel-metal hydride battery electrodes. In: Third international symposium on recycling of metals and engineered materials, Alabama (USA), pp 131–144

    Google Scholar 

  49. Zhang PW, Yokoyama T, Itabashi O, Wakui Y, Suzuki TM, Inoue K (1998) Hydrometallurgical process for recovery of metal values from spent nickel metal hydride secondary batteries. Hydrometallurgy 77:116–122

    Google Scholar 

  50. Poscher A, Luidold S, Antrekowitsch H (2011) Aufbereitung von nickel-metalllhydridakkus zur Wiedergewinnung Seltener Erden, pp 419–446

    Google Scholar 

  51. Kaindl M, Luidold S, Poscher A (2012) Recycling of rare earths from nickel-metal hydride batteries with special reference to the acid recovery. Berg-Huetten-maenn. Monatsh 157:20–26

    Article  Google Scholar 

  52. Luidold S, Antrekowitsch H (2012) Recovery of rare earth metals from waste material by leaching in non-oxidizing acid and by precipitating using sulphates. EP 2444507

    Google Scholar 

  53. Kanamori T, Matsuda M, Miyake M (2009) Recovery of rare metal compounds from nickel-metal hydride battery waste and their application to CH4 dry reforming catalyst. J Hazard Mater 169:240–245

    Article  Google Scholar 

  54. Provazi K, Campos BA, Espinosa DCR, Tenorio JAS (2011) Metal separation from mixed types of batteries using selective precipitation and liquid-liquid extraction techniques. Waste Manage 31:59–64

    Article  Google Scholar 

  55. Bertuol DA, Bernardes AM, Tenorio JAS (2009) Spent Ni-MH batteries—the role of selective precipitation in the recovery of valuable metals. J Power Sources 193(2):914–923

    Article  Google Scholar 

  56. Binnemans K, Pontikes Y, Jones PT, Gerven TV, Blanpain B (2013) Recovery of rare earths from industrial waste residues: a concise review. In: Proceedings of the 3rd International slag valorisation symposium, Leuven, Belgium, pp 191–205

    Google Scholar 

  57. Klauber C, Gräfe M, Power G (2011) Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy 108(1):11–32

    Article  Google Scholar 

  58. Borra CR, Pontikes Y, Binnemans K, Gervena TV (2015) Leaching of rare earths from bauxite residue (red mud). Miner Eng 76:20–27

    Article  Google Scholar 

  59. Borra CR, Blanpain B, Pontikes Y, Binnemans K, Gerven TV (2016) Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery. J Sustain Metall 2:28–37

    Article  Google Scholar 

  60. Fulford GD, Lever G, Sato T (1991) Recovery of rare earth elements from Bayer process red mud. US Patent 5,030,424

    Google Scholar 

  61. Xue A, Chen X, Tang X (2010) The technological study and leaching kinetics of scandium from red mud. Nonferrous Metals Extr Metall 2:51–53

    Google Scholar 

  62. Ochsenkühn-Petropulu M, Lyberopulu T, Ochsenkühn K, Parissakis G (1996) Recovery of lanthanides and yttrium from red mud by selective leaching. Anal Chim Acta 319(1):249–254

    Article  Google Scholar 

  63. Ochsenkühn-Petropoulou M, Hatzilyberis K, Mendrinos L, Salmas C (2002) Pilot-plant investigation of the leaching process for the recovery of scandium from red mud. Ind Eng Chem Res 41(23):5794–5801

    Article  Google Scholar 

  64. Zhang J, Deng Z, Xu T (2005) Experimental investigation on leaching metals from red mud. Light Metals 2:13–15

    Google Scholar 

  65. Wang KQ, Yu YB, Wang H, Chen J (2010) Experimental investigation on leaching scandium from red mud by hydrochloric acid. Chin Rare Earths 1:27

    Google Scholar 

  66. Bray EL (2010) Bauxite and Aluminium. U.S. Geological Survey Minerals Yearbook—2008, U.S. Department of the Interior

    Google Scholar 

  67. Abhilash, Sinha S, Meshram P, Pandey BD, Behera PK, Satpathy BK (2014) Red Mud: a secondary resource for rare earth elements. In: International bauxite, alumina and aluminium symposium, The IBAAS Binder Vol III, Vishakhapatnam, pp 148–162

    Google Scholar 

  68. Kertis M, Yudovich Y (2009) Estimations of clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coal. Int J Coal Geol 78(2):135–148

    Article  Google Scholar 

  69. Lin R, Howard BH, Roth EA, Bank TL, Granite EJ, Soong Y (2017) Enrichment of rare earth elements from coal and coal by-products by physical separation. Fuel 200:506–520

    Article  Google Scholar 

  70. Dai S, Graham IT, Ward CR (2016) A review of anomalous rare earth elements and yttrium in coal. Int J Coal Geol 159:82–95

    Article  Google Scholar 

  71. Phuoc TX, Wang P, McIntyre D (2016) Detection of rare earth elements in powder river basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS). Fuel 163:129–132

    Article  Google Scholar 

  72. Merten D, Bechul G (2004) Determination of rare earth elements in acid mine drainage by inductively coupled plasma mass spectrometry. Microchim Acta 148:163–170

    Article  Google Scholar 

  73. Zhao F, Cong Z, Sun H, Ren D (2007) The geochemistry of rare earth elements (REE) in acid mine drainage from the Sitai coal mine, Shanxi Province, North China. Coal Geol 70:184–192

    Article  Google Scholar 

  74. Ziemkiewicz P, He T, Noble A, Liu X (2016) Recovery of rare earth elements (REEs) from coal mine drainage. U.S. Department of Energy, National Energy Technology Laboratory

    Google Scholar 

  75. Roig MG, Manzano T, Diaz M (1997) Biochemical process for the removal of uranium from acid mine drainage. Water Res 31(8):2073–2083

    Article  Google Scholar 

  76. Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  Google Scholar 

  77. Bau M, Dulski P (1996) Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet Sci Lett 143(1–4):245–255

    Article  Google Scholar 

  78. Knappe A, Pekdeger A (2005) Positive gadolinium anomaly in surface and ground water of the urban area Berlin, Germany. Chemie der Erde-Geochemistry 65(2):167–189

    Article  Google Scholar 

  79. Rogosnitzky M, Branch S (2016) Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29:365–376

    Article  Google Scholar 

  80. Lawrence MG, Keller J, Poussade Y (2010) Removal of magnetic resonance imaging contrast agents through advanced water treatment plants. Water Sci Technol 61(3):685–692

    Article  Google Scholar 

  81. Li C, Zhuang Z, Huang F, Lin Z (2013) Recycling rare earth elements from industrial wastewater with flowerlike nano-Mg(OH)2. App Mater Interfaces 5(19):9719–9725

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director, CSIR-National Metallurgical Laboratory, Jamshedpur for the permission to publish this paper. One of the authors, Ms. Archana Kumari would like to extend her sincere gratitude to CSIR, New Delhi (Grant: 31/10(60)/2015-EMR-I) for providing Senior Research Fellowship to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Kumari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumari, A., Jha, M.K., Pathak, D.D. (2018). Review on the Processes for the Recovery of Rare Earth Metals (REMs) from Secondary Resources. In: Kim, H., et al. Rare Metal Technology 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72350-1_5

Download citation

Publish with us

Policies and ethics