Advertisement

Fast and Secure Handoffs for V2I Communication in Smart City Wi-Fi Deployment

  • Pranav Kumar Singh
  • Subhredu Chattopadhyay
  • Pradeepkumar Bhale
  • Sukumar Nandi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10722)

Abstract

The Intelligent Transport System (ITS) is a vital part of smart city developments. Due to densely deployed access points and vehicular mobility in a smart city, the number of handovers also increases proportionately. Minimization of the handoff latency is crucial to provide a better quality of service for vehicles to have access different ITS services and applications. Increased handover latency can cause an interruption in vehicle-to-infrastructure (V2I) communication. In this paper, we propose a fast and secure handoff mechanism for smart cities that have acceptable handoff latency for delay-sensitive ITS applications and services. Our proposal considers mobility and communication overhead to provide lower handoff latency. We compare our proposed mobility aware background scanning mechanism (AdBack) with standard Active Scanning mechanism in an emulated test bed. Our test results reveal that the proposed AdBack mechanism significantly outperforms the existing mechanisms in terms of handover latency, packet drop rates, and throughput. Experimental results show that amalgamation of AdBack and existing fast re-authentication (IEEE 802.11r) can improve connectivity for V2I communication in a smart city. We provide rigorous emulation results to justify the performance of our proposed scheme.

Notes

Acknowledgment

We are thankful to R. R. Fontes, one of the authors of [32] and developer of Mininet-WiFi who provided us help in solving the problems related to our experimental setup on Mininet-WiFi.

References

  1. 1.
    Consortium, C.V.S.C., et al.: Vehicle safety communications project: task 3 final report: identify intelligent vehicle safety applications enabled by DSRC. National Highway Traffic Safety Administration, US Department of Transportation, Washington DC (2005)Google Scholar
  2. 2.
    IEEE Std 802.11r/D01.0: Draft Amendment to Standard for Information Technology Telecommunications and Information Exchange Between Systems LAN/MAN Specific Requirements Part 11: Wireless Medium Access Control (MAC) and Physical Layer Specifications: Amendment 8: Fast BSS TransitionGoogle Scholar
  3. 3.
    IEEE Std 802.11i: IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer Specifications: Amendment 6: Medium Access Control Security EnhancementsGoogle Scholar
  4. 4.
    Mishra, A., Shin, M., Arbaugh, W.: An empirical analysis of the IEEE 802.11 MAC layer handoff process. ACM SIGCOMM Comput. Commun. Rev. 33(2), 93–102 (2003)CrossRefGoogle Scholar
  5. 5.
    Shin, S., Forte, A.G., Rawat, A.S., Schulzrinne, H.: Reducing MAC layer handoff latency in IEEE 802.11 wireless LANs. In: Proceedings of the Second International Workshop on Mobility Management and Wireless Access Protocols, pp. 19–26. ACM (2004)Google Scholar
  6. 6.
    Bangolae, S., Bell, C., Qi, E.: Performance study of fast BSS transition using IEEE 802.11r. In: Proceedings of the 2006 International Conference on Wireless Communications and Mobile Computing, pp. 737–742. ACM (2006)Google Scholar
  7. 7.
    Park, S.-H., Kim, H.-S., Park, C.-S., Kim, J.-W., Ko, S.-J.: Selective channel scanning for fast handoff in wireless LAN using neighbor graph. In: Niemegeers, I., de Groot, S.H. (eds.) PWC 2004. LNCS, vol. 3260, pp. 194–203. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30199-8_16 CrossRefGoogle Scholar
  8. 8.
    Sarma, A., Chakraborty, S., Nandi, S., Choubey, A.: Context aware inter-bss handoff in IEEE 802.11 networks: efficient resource utilization and performance improvement. Wireless Pers. Commun. 77(4), 2587–2614 (2014)CrossRefGoogle Scholar
  9. 9.
    Brik, V., Mishra, A., Banerjee, S.: Eliminating handoff latencies in 802.11 WLANs using multiple radios: applications, experience, and evaluation. In: Proceedings of the 5th ACM SIGCOMM Conference on Internet Measurement, IMC 2005, p. 27 (2005)Google Scholar
  10. 10.
    Jin, S., Choi, S.: A seamless handoff with multiple radios in IEEE 802.11 WLANs. IEEE Trans. Veh. Technol. 63(3), 1408–1418 (2014)CrossRefGoogle Scholar
  11. 11.
    Ramani, I., Savage, S.: SyncScan: practical fast handoff for 802.11 infrastructure networks. In: INFOCOM 2005, 24th Annual Joint Conference of the IEEE Computer and Communications Societies, Proceedings IEEE. vol. 1, pp. 675–684. IEEE (2005)Google Scholar
  12. 12.
    Chen, Y.S., Chuang, M.C., Chen, C.K.: DeuceScan: deuce-based fast handoff scheme in IEEE 802.11 wireless networks. IEEE Trans. Veh. Technol. 57(2), 1126–1141 (2008)CrossRefGoogle Scholar
  13. 13.
    Yoon, M., Cho, K., Li, J., Yun, J., Yoo, M., Kim, Y., Shu, Q., Yun, J., Han, K.: Adaptivescan: the fast layer-2 handoff for WLAN. In: 2011 Eighth International Conference on Information Technology: New Generations (ITNG), pp. 106–111. IEEE (2011)Google Scholar
  14. 14.
    Wu, T.Y., Obaidat, M.S., Chan, H.L.: Qualityscan scheme for load balancing efficiency in vehicular ad hoc networks (VANETs). J. Syst. Softw. 104, 60–68 (2015)CrossRefGoogle Scholar
  15. 15.
    Lee, J., Cho, S.-P., Kim, H.: Position based handover control method. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganà, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 781–788. Springer, Heidelberg (2005).  https://doi.org/10.1007/11424826_83 CrossRefGoogle Scholar
  16. 16.
    Montavont, J., Noel, T.: IEEE 802.11 handovers assisted by GPS information. In: 2006 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob 2006), pp. 166–172. IEEE (2006)Google Scholar
  17. 17.
    Nicholson, A.J., Noble, B.D.: Breadcrumbs: forecasting mobile connectivity. In: Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, pp. 46–57. ACM (2008)Google Scholar
  18. 18.
    Zhao, Y., Li, W., Lu, S.: Navigation-driven handoff minimization in wireless networks. J. Netw. Comput. Appl. 74, 11–20 (2016)CrossRefGoogle Scholar
  19. 19.
    Navda, V., Subramanian, A.P., Dhanasekaran, K., Timm-Giel, A., Das, S.: Mobisteer: using steerable beam directional antenna for vehicular network access. In: Proceedings of the 5th International Conference on Mobile Systems, Applications and Services, pp. 192–205. ACM (2007)Google Scholar
  20. 20.
    Balasubramanian, A., Mahajan, R., Venkataramani, A., Levine, B.N., Zahorjan, J.: Interactive wifi connectivity for moving vehicles. ACM SIGCOMM Comput. Commun. Rev. 38(4), 427–438 (2008)CrossRefGoogle Scholar
  21. 21.
    Deshpande, P., Kashyap, A., Sung, C., Das, S.R.: Predictive methods for improved vehicular wifi access. In: Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, pp. 263–276. ACM (2009)Google Scholar
  22. 22.
    Gañán, C.H., Reñé, S., Muñoz-Tapia, J.L., Esparza, O., Mata-Díaz, J., Alins, J.: Secure handoffs for V2I communications in 802.11 networks. In: Proceedings of the 10th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, pp. 49–56. ACM (2013)Google Scholar
  23. 23.
    Tabassam, A.A., Trsek, H., Heiss, S., Jasperneite, J.: Fast and seamless handover for secure mobile industrial applications with 802.11r. In: 2009 IEEE 34th Conference on Local Computer Networks, LCN 2009, pp. 750–757. IEEE (2009)Google Scholar
  24. 24.
    Martinovic, I., Zdarsky, F.A., Bachorek, A., Schmitt, J.B.: Measurement and analysis of handover latencies in IEEE 802.11i secured networks. In: Proceedings of the 13th European Wireless Conference (EW2007), Paris, France (2007)Google Scholar
  25. 25.
    Machań, P., Wozniak, J.: On the fast BSS transition algorithms in the IEEE 802.11r local area wireless networks. Telecommun. Syst. 52(4), 2713–2720 (2013)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: Sumo-simulation of Urban mobility: an overview. In: Proceedings of SIMUL 2011, The Third International Conference on Advances in System Simulation, ThinkMind (2011)Google Scholar
  28. 28.
    Fontes, R.R., Afzal, S., Brito, S.H., Santos, M.A., Rothenberg, C.E.: Mininet-wifi: emulating software-defined wireless networks. In: 2015 11th International Conference on Network and Service Management (CNSM), pp. 384–389. IEEE (2015)Google Scholar
  29. 29.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Pranav Kumar Singh
    • 1
  • Subhredu Chattopadhyay
    • 1
  • Pradeepkumar Bhale
    • 1
  • Sukumar Nandi
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyGuwahatiIndia

Personalised recommendations